dc.contributor.author |
Kovan, Volkan |
|
dc.contributor.author |
Hammer, J. |
|
dc.contributor.author |
Mai, R. |
|
dc.contributor.author |
Yüksel, M. |
|
dc.date.accessioned |
2019-08-16T12:14:23Z |
|
dc.date.available |
2019-08-16T12:14:23Z |
|
dc.date.issued |
2008 |
|
dc.identifier.issn |
1044-5803 |
|
dc.identifier.uri |
https://hdl.handle.net/11499/7024 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.matchar.2008.02.004 |
|
dc.description.abstract |
Many studies of thermal-mechanical fatigue behaviour address steels, nickel-base superalloys or fiber-reinforced titanium alloys, but only rough data are available for powder metallurgical high-temperature materials. In this study, the cyclic deformation and lifetime behaviour of the powder metallurgical nickel-base superalloy PM1000 were investigated under thermal-mechanical fatigue conditions. Thermal-mechanical fatigue tests were performed in the temperature range of 450-850 °C. The phase angle between the mechanical strain and the thermal cycle (- 135°) is closely related to the appropriate operating conditions in aero-engines. Thermal-mechanical fatigue results were compared with isothermal fatigue results reported in the literature for test temperatures of 850 and 1000 °C. Results revealed that isothermal fatigue exhibited a longer lifetime than thermal-mechanical fatigue at corresponding mechanical strain amplitude. In thermal-mechanical fatigue loading, cracks tended to initiate intergranularly and propagate transgranularly. Life prediction models were developed and compared to evaluate the possibility of predicting both thermal-mechanical fatigue and isothermal fatigue lifetimes. © 2008 Elsevier Inc. All rights reserved. |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.ispartof |
Materials Characterization |
en_US |
dc.rights |
info:eu-repo/semantics/closedAccess |
en_US |
dc.subject |
Isothermal fatigue |
en_US |
dc.subject |
Life prediction |
en_US |
dc.subject |
Nickel-based superalloy |
en_US |
dc.subject |
Thermal-mechanical fatigue |
en_US |
dc.subject |
Fatigue of materials |
en_US |
dc.subject |
Fatigue testing |
en_US |
dc.subject |
Fiber reinforced materials |
en_US |
dc.subject |
Forecasting |
en_US |
dc.subject |
Implants (surgical) |
en_US |
dc.subject |
Mathematical models |
en_US |
dc.subject |
Metallic compounds |
en_US |
dc.subject |
Metallurgy |
en_US |
dc.subject |
Nickel |
en_US |
dc.subject |
Nickel alloys |
en_US |
dc.subject |
Nickel oxide |
en_US |
dc.subject |
Powders |
en_US |
dc.subject |
Titanium |
en_US |
dc.subject |
Titanium alloys |
en_US |
dc.subject |
Mech anical fatigue |
en_US |
dc.subject |
Superalloys |
en_US |
dc.subject |
Cracks |
en_US |
dc.subject |
Dispersions |
en_US |
dc.subject |
Fatigue |
en_US |
dc.subject |
Forecasts |
en_US |
dc.subject |
Mathematical Models |
en_US |
dc.subject |
Nickel Compounds |
en_US |
dc.subject |
Powder |
en_US |
dc.subject |
Thermal Cycle |
en_US |
dc.title |
Thermal-mechanical fatigue behaviour and life prediction of oxide dispersion strengthened nickel-based superalloy PM1000 |
en_US |
dc.type |
Article |
en_US |
dc.identifier.volume |
59 |
en_US |
dc.identifier.issue |
11 |
en_US |
dc.identifier.startpage |
1600 |
|
dc.identifier.startpage |
1600 |
en_US |
dc.identifier.endpage |
1606 |
en_US |
dc.identifier.doi |
10.1016/j.matchar.2008.02.004 |
|
dc.relation.publicationcategory |
Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı |
en_US |
dc.identifier.scopus |
2-s2.0-51649085080 |
en_US |
dc.identifier.wos |
WOS:000260293500011 |
en_US |