DSpace Repository

A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO2 cathode interlayers for highly efficient and extremely stable polymer solar cells

Show simple item record

dc.contributor.author Tountas, M.
dc.contributor.author Topal, Yasemin
dc.contributor.author Verykios, A.
dc.contributor.author Soultati, A.
dc.contributor.author Kaltzoglou, A.
dc.contributor.author Papadopoulos, T.A.
dc.contributor.author Auras, F.
dc.contributor.author Seintis, K.
dc.contributor.author Fakis, M.
dc.contributor.author Palilis, L.C.
dc.contributor.author Tsikritzis, D.
dc.contributor.author Kennou, S.
dc.contributor.author Fakharuddin, A.
dc.contributor.author Schmidt-Mende, L.
dc.contributor.author Gardelis, S.
dc.contributor.author Kus, M.
dc.contributor.author Falaras, P.
dc.contributor.author Davazoglou, D.
dc.contributor.author Argitis, P.
dc.contributor.author Vasilopoulou, M.
dc.date.accessioned 2019-08-16T13:34:37Z
dc.date.available 2019-08-16T13:34:37Z
dc.date.issued 2018
dc.identifier.issn 20507534 (ISSN)
dc.identifier.uri http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/11035
dc.description.abstract Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic-inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours. © 2018 The Royal Society of Chemistry.
dc.language.iso English
dc.publisher Royal Society of Chemistry
dc.relation.isversionof 10.1039/c7tc04960a
dc.rights info:eu-repo/semantics/embargoedAccess
dc.subject Collector efficiency
dc.subject Electron transitions
dc.subject Metals
dc.subject Oxides
dc.subject Polymer solar cells
dc.subject Titanium compounds
dc.subject Titanium dioxide
dc.subject Titanium oxides
dc.subject Zinc compounds
dc.subject Zinc oxide
dc.subject Ambient conditions
dc.subject Cathode interlayers
dc.subject Electron transfer
dc.subject Inverted photovoltaic
dc.subject Organic-inorganic hybrid
dc.subject Poly (3-hexylthiophene)
dc.subject Surface passivation
dc.subject Temporal stability
dc.subject Solar cells
dc.title A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO2 cathode interlayers for highly efficient and extremely stable polymer solar cells
dc.type Article
dc.relation.journal Journal of Materials Chemistry C
dc.identifier.volume 6
dc.identifier.issue 6
dc.identifier.startpage 1459
dc.identifier.endpage 1469
dc.relation.publicationCategory Uluslararası Hakemli Dergi
dc.identifier.index Scopus
dc.identifier.index WOS


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record