T.C.
PAMUKKALE ÜNİVERSİTESİ
EĞİTİM BİLİMLERİ ENSTİTÜSÜ
EĞİTİM PROGRAMLARI VE ÖĞRETİMİ ANABİLİM DALI
YÜKSEK LİSANS TEZİ

TARIHSEL BAĞLAMLARLA DESTEKLENEN MATEMATİK
ÖĞRETİMİNİN BEŞİNCİ SINIF ÖĞRENCİLERİNİN MATEMATİK
BAŞARISINA, ÖZYETERLİK ALGISINA VE MATEMATİĞE
İLİŞKİN İNANÇLARINA ETKİSİ

Düriye Aysen GÖRÜR

Danışman
Doç. Dr. Şükran TOK
YÜKSEK LİSANS TEZİ ONAY FORMU

Bu çalışma, Eğitim Bilimleri Anabilim Dalı, Eğitim Programları ve Öğretim Bilim Dalı'nda jürimiz tarafından Yüksek Lisans Tezi olarak kabul edilmiştir.

Başkan: Prof. Dr. Adil TÜRKOĞLU

Üye: Doç. Dr. Şükran TOK (Tez Danışmanı)

Üye: Yrd. Doç. Dr. İbrahim TUNCEL

Pamukkale Üniversitesi Eğitim Bilimleri Enstitüsü Yönetim Kurulu’nun 26.02.2016 tarih ve 014/1 sayılı kararı ile onaylanmıştır.

Prof. Dr. Ramazan BAŞTÜRK
Enstitü Müdürü
İÇİNDEKİLER

ETİK BEYANNAMESİ .. vii
TEŞEKKÜR ... ix
ÖZET ... x
ABSTRACT .. xii
TABLOLAR LİSTESİ .. xiv
ŞEKİLLER LİSTESİ .. xv
SİMGE VE KISALTMALAR .. xvi
BİRİNCİ BÖLÜM: GİRİŞ ... 1
 1.1. Problem Durumu .. 1
 1.2. Araştırmanın Önemi .. 6
 1.3. Araştırmanın Amacı .. 8
 1.4. Problem Cümlesi .. 8
 1.4.1. Alt problemler .. 8
 1.5. Araştırmanın Sınırlıkları .. 9
 1.6. Araştırmanın Varsaymaları ... 10

İKİNCİ BÖLÜM: ALANYAZIN TARAMASI ... 11
 2.1 Matematik Felsefesi ve Matematik Tarihiyle İlişkisi .. 11
 2.2 Matematik Öğretimi .. 12
 2.3 Matematik Tarihinin Matematik Öğretimindeki Yeri ve Önemi 13
 2.4 Problem Çözmeye Kavramsal Bakış ... 15
 2.5 Polya’nın Problem Çözme Süreci .. 16
 2.6 Özyeteriliğe kavramsal bakış .. 17
 2.7 Matematiksel özyeterlik .. 18
 2.8 Matematiksel inanç .. 18
 2.9 İlgili Araştırmalar .. 20
 2.9.1 Matematik tarihi ile ilgili araştırmalar .. 21

ÜÇÜNCÜ BÖLÜM: YÖNTEM .. 27
 3.1 Araştırma Deseni ... 27
 3.2 Araştırmanın Değişkenleri ... 28
 3.2.1 Araştırmanın bağımsız değişkenleri ... 28
 3.2.2 Araştırmanın bağımlı değişkenleri ... 28
 3.3 Araştırmanın Çalışma Grubu ... 28
(Ek-2) MADDE ANALİZLERİ ... 63
(EK-3) 5. SINIF MATEMATİK DERSİ SAYILAR ÖĞRENME ALANI MATEMATİK BAŞARI TESTİ.. 64
(EK-4) MATEMATİĞE İLİŞKİN ÖZYETERLİK ALGı ÖLÇEĞİ............................... 67
(EK 5) ÖZYETERLİLİK ALGı ÖLÇEĞİ İZNİ ... 68
(EK-6) MATEMATİĞE İLİŞKİN İNANÇ ÖLÇEĞİ ... 69
(EK 7) İZEM VE İZGI’NİN GİZEMLİ SAYILARI VE DOĞRU ÇIKIŞI BULMA ÇABALARI71
(EK 8) DENEYSEL İŞLEMLERE İLİŞKİN ÖĞRENCİ FOTOĞRAFLARI........................ 79
(EK 9) ÖĞRENCİ ÇALIŞMALARI .. 82
(EK 10) ÖĞRENCİ REHBERİ ... 87
(EK 11) UYGULAMA İZNİ ... 89
Özgeçmiş Formu ... 90
Tez Kontrol Listesi .. 91
ETİK BEYANNAMESİ

Pamukkale Üniversitesi Eğitim Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- Görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,
- Başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- Atıfta bulunduğu eserlerin tümünü kaynak olarak gösterdiğini,
- Kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- Bu tezin herhangi bir bölümünü bu üniversitede veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı beyan ederim.

Durmuş Aysen Görür
Yaşam kaynağıım annem, babam, kardeşim ve eşime…
TEŞEKKÜR

Araştırmamda bana ışık olan, sabır ve titizlikle bıkmadan tezimin şekillenmesinde yardımcı olan, öğrencisi olmanın ayrıcalığını ömrün boyunca taşıyacağım, akademik anlamda kendime örnek aldığım, izinden gitmek istediğim çok sevdiğim hocam Doç. Dr. Şükran Tok’a sonsuz saygı duyar ve teşekkürlerimi sunarım.

Tezimin nitelikli hale gelmesinde bana yardımcı olan değerli hocam Doç. Dr. Tolga Kabaca’ya tezime katkısı için teşekkür ederim.

Lisansüstü eğitim süresince iyi ki tanıştığım sevgili arkadaşlarım, Merve Küçük’e Fatma Canan Göksu’ya ve Rabia Karakuş’a destekleri için ayrıca araştırmamın bir parçası olan sevgili öğrencilerime ve öğretmen arkadaşlarını teşekkür ederim.

Hayatım boyunca kişiliklerini örnek aldığım, varlıklarıyla beni mutlu eden canım annem Suzan Çelik ve canım babam Zihni Çelik ve sevgili kardeşim Ramazan Sinan Çelik’e, her zaman güvenini hissettirip hayatında olan sevgili eşim Ali Kürşad Görür’e teşekkürlerimi sunarım.

Düriye Aysen Görür
ÖZET

Tarihsel Bağlamlarla Desteklenen Matematik Öğretiminin Beşinci Sınıf Öğrencilerinin Matematik Başarısına, Özyeterlik Algısına ve Matematiğe İlişkin İnançlarına Etkisi

Görür, Düriye Aysen

Yüksek Lisans Tezi, Eğitim Programları ve Öğretimi Anabilim Dalı

Tez Danışmanı: Doç. Dr. Şükran Tok

Şubat 2016, 90 Sayfa

paket programından yararlanılarak analiz edilmiştir. İstatistiksel analizler için ilişkisiz örneklemeler \(t \)-testi ve ilişkili örneklemeler \(t \)-testi kullanılmıştır.

Anahtar kelimeler: Matematik tarihi, matematik öğretimi, matematik başarısı, matematiğe ilişkin öz-yeterlik algısı, matematiğe ilişkin inanç.
ABSTRACT

Effects of Mathematical Teaching Supported by Historical Contexts on the Mathematics Success, Self-Efficacy Perceptions and Beliefs About Mathematics of 5th Grade Students

Görür, Düriye Aysen

Master of Science Thesis, Department of Curriculum and Instruction

Supervisor: Assoc. Prof. Dr. Şükran Tok

February 2016, 90 Pages

The purpose of this study is to investigate the effects of mathematics teaching with mathematics history on fifth grade students’ beliefs about mathematics. For this purpose, it is examined whether there are differences between fifth grade students’ test score and their mathematics success, self-efficacy perceptions and beliefs about mathematics. In this study equivalent design of one group pretest-posttest quasi experimental design was used. One of the groups in this research is experimental group and the other one is control group. This research was conducted in 2013-2014 educational year spring term in a secondary school in Pamukkale, Denizli with 44 fifth grade students. In the experimental group, mathematics teaching with mathematics history and in the control group mathematics teaching in accordance with mathematics curriculum was realised.

As data collection tools, mathematics success test developed by the researcher, mathematics self-efficacy scale developed by Umay (2001), beliefs about mathematics scale developed by Çayır, Yıldırım (2003) were used in the study. Data were analysed via SPSS 16.00 packet program for statistical analysis, independent samples t tests and paired samples t test were used.

As a result, there were significant differences between pre and post mathematics success test results, mathematics self efficacy and mathematics beliefs about mathematics scale average scores in experimental group in which mathematics teaching with mathematics history. However, there were no significant differences between pre and post mathematics success test results, mathematics self efficacy and mathematics beliefs about
mathematics scale average scores in control group in which mathematics teaching in accordance with mathematics curriculum. Additionally, there were significant differences in mathematics success test and beliefs about mathematics scale post test scores between experimental and control group. However, there were no significant differences in mathematics self efficacy post test scores between experimental and control groups.

Keywords: History of mathematics, mathematics teaching, mathematics self-efficacy, beliefs about mathematics, mathematics achievement.
TABLOLAR LİSTESİ

Tablo 3.1. Araştırma Deseninin Tablosal Gösterimi……………………………………………………………27
Tablo 3.2. Deney ve Kontrol Gruplarındaki Öğrencilerin Matematik Başarı Testi Ön- Test Puanlarına İlişkin t-testi Sonuçları………………………………………………………………………………29
Tablo 3.3. Deney ve Kontrol Gruplarındaki Öğrencilerin Matematik İnanç Ölçeği Ön-Test Puanlarına İlişkin t-testi Sonuçları………………………………………………………………………………29
Tablo 3.4. Deney ve Kontrol Gruplarındaki Öğrencilerin Matematiğe İlişkin Özyeterlik Algı Ölçeği Ön- Test puanlarına ilişkin t-testi sonuçları………………………………………………………………….30
Tablo 3.5. Başarı Testine İlişkin İstatistiksel Değerler………31
Tablo 3.1. Deney Grubu Matematik Başarı Testi Ön-test ve Son-test Puanlarına ait t-testi Sonuçları……………………………………………………………………………………………..40
Tablo 3.2. Kontrol Grubu Matematik Başarı Testi Ön-test ve Son-test Puanlarına ait t-testi Sonuçları……………………………………………………………………………………………..41
Tablo 3.3. Deney ve Kontrol Grubu Matematik Başarı Testi Son-test Puanları Arası İlişkisiz Örneklemler t-testi Sonuçları………………………………………………………………………..42
Tablo 3.4. Deney Grubu Matematiğe Karşı Özyeterlik Algısı Ölçeği Ön-test ve Son-test Puanlarına Ait t-testi Sonuçları………………………………………………………………………………………..43
Tablo 3.5. Kontrol Grubu Matematiğe Karşı Özyeterlik Algısı Ölçeği Ön-test ve Son-test Puanlarına Ait t-testi Sonuçları………………………………………………………………………………………..44
Tablo 3.6. Deney ve Kontrol Grubu Matematiğe Karşı Özyeterlik Algısı Ölçeği Son-test Puanları Arası İlişkisiz Örneklemler t-testi Sonuçları………………………………………………………………………..45
Tablo 3.7. Deney Grubu Matematik İnanç Ölçeği Ön-test ve Son-test Puanlarına Ait t-testi Sonuçları………47
Tablo 3.8. Kontrol Grubu Matematik İnanç Ölçeği Ön-test ve Son-test Puanlarına ait t-testi Sonuçları………48
Tablo 3.9. Deney ve Kontrol Grubu Matematik İnanç Ölçeği Son-test Puanları Arası İlişkisiz Örneklemler t-Testi Sonuçları………………………………………………………………………………………..49
ŞEKİLLER LİSTESİ

Şekil 2.1 Öğrencilerin matematikle ilişkili inanç sistemlerinin boyutları 19
Şekil 3.1 Deney grubu öğrenme süreci etkinliği... 36
Şekil 3.2 Kontrol grubu öğrenme süreci etkinliği... 37
SİMGE VE KISALTMALAR

SPSS : Statistical Package For The Social Sciences
MEB : Milli Eğitim Bakanlığı
NCTM : National Council of Teachers of Mathematics
PISA : Programme for International Student Assessment
TIMMS : The Trends in International Mathematics and Science Study
OECD : Organisation for economic co-operation and development
ANCOVA : Analysis of covariance
ANOVA : Analysis of variance
ITTEMAN : Item and Test Analysis Program
t : t değeri
p : Anlamlılık Derecesi
N : Eleman Sayısı
X : Ortalama
S : Sayfa
S_s : Standart Sapma
BİRİNCİ BÖLÜM: GİRİŞ

1.1. Problem Durumu

Matematik, aslında insanların gereksinimlerinden ortaya çıkar ve insanlar tarafından soylulanarak gösterildiğinden gerçek yaşam durumlarından farklı bir Pike algılanır. Bu durumun bir sonucu olarak gerçek yaşamla matematik arasında kopukluk olduğunu düşünülür. Oysa gerçek verilerle oluşturulmuş problemler matematiği daha gerçek ve anlaşılabilir (Umay, 2007, s. 156).

Matematik, hayatı anlamlandırmanın ve sevmenin bir yoludur. Sevmek ise anlamakla mümkündür. Aslında anlayabildiğimiz şeyleri severiz (Sertöz, 2012, s. 1). Matematik tarihinden yaranılarak işlenen derslerin, öğrencilerin korkusunu hafifleterek
onlara matematiksel içeriklerin kısa sürede ortaya çıkmadığını göstermektedir. Böylelikle öğrenciler, bazı konuları zamanla daha iyi öğrenebileceklerini düşününecektirler (Bellomo, Wertheir, 2010, s. 19-24). Matematik dersi öğretim programı öğrencilerin matematik ve matematik dersine karşı olumlu bakış açısı geliştirme ve matematığı daha iyi anlamlandırma açısından matematik tarihinden yararlanması gerektiğini önermektedir (MEB, 2013a, s. VIII).

Matematik tarihinden yararlanarak oluşturululan aktivitelerde öğrenciler, matematığı ilginç bulmuşlardır (Bütüner, 2015, s. 189). Matematik tarihi oldukça önemli olmasının yanı sıra ilgi çekicidir. Tarihsel kişiler, bu kişilerin hayatlarını ve matematığın gelişimi üzerine katkılarını paylaşmak matematik derslerinin daha anlamlı ve dikkat çekici olmasını sağlayabilir.

Antik Yunan geometricilerinden Öklit’in hayatını öğrenme fırsatı bulan öğrenciler bugün öğrendikleri geometrinin en az 2500 yıl öncesine ilişkili olduğunu ve bu bilgilerin tarihi miras olarak günümüze kadar geldiğini görebilirler (MEB, 2013a, s. VIII). Matematik düşüncelerin genelini kapsayan soyut bir yapıya sahip; matematik tarihi ise pek çok uygarlığa mal olmuş düşünce serüvenlerini yansıtır (Struik, 2011, s. 15). Önemli matematikçileri tanıtırken ortaya çıkan çalışmaların uygarlığın gelişmesinde oynadığı rolü gösteren örnekler sunulması öğrencilerin matematiğin önemini kavraması açısından oldukça önemlidir. Matematik öğretiminin tarihi olaylar ve günlük hayatla ilişkilendirilmesi matematik dersine yönelik tutumlarını olumlu yönde etkileyecektir (Baki, 2014, s. 8). Matematik tarihiyle ilgili etkinlikler matematikçilerin kişiliklerini ve başarlarını derinlemesine anlamayı ayrıca matematikçilerin duruşlarını irdelenmesine olanak sağlayabilir (Loats, White ve Rubino, 2014, s. 708). Matematiksel kavramların tarihi gelişimleri ve matematikçilerin yaşamlarını matematik dersine karşı olumlu bakış açısı gelişirmek için önemli olduğu düşünülmektedir (Yenilmez, 2011, s. 80).

Bu düşünceler doğrultusunda; matematik dersi öğretim programında matematik tarihine verilen öneme karşılık matematik tarihinden önemli kişilerin hayat hikayeleri ile ilgili bilgileri vermekten öteye gidilemediği sınırlı şekilde matematik tarihine ait bilgilerin verildiği görülebilmektedir. Matematik tarihinin, önemli matematikçilerin hayat hikayelerinin verilerek ilgi çekici hale getirilmesinin ötesinde, matematik derslerinin tarihsel bağlamlarla desteklenerek derslerin daha anlamlı ve kalıcı olabileceği düşünülmektedir. Türkiye’de ise matematik tarihinin matematiksel içerikle nasıl
bütünleştirileceğine dair sorular matematik dersindeki başarı ve duyuşal özellikler açısından halen belirizliklerini koruduğu söylenebilir. Bu düşüncelere yeni bir yara matematik tarihinin, matematik ders programında kazandırılması öngörülen matematiksel süreç becerilerinden, ilişkilendirme ve akıl yürütmeyle yakından ilişkili olduğu düşünülmektedir. Bu bağlamda söz konusu olan matematiksel süreç becerilerine olan vurguyu artırabilmek için matematik tarihinin, matematiksel içeriği desteklemesiyle ortaya çıkarılabileceğini düşünülmektedir.

Bu çalışma ayrıca matematik tarihiyle desteklenmiş matematik öğretiminin matematiğe yönelik öz yeterlik algısı üzerindeki etkisini incelemeyi amaçlamıştır.

Sonuç olarak tüm bu durumlar göz önünde bulundurulduğunda tarihsel bağlamlarla desteklenmiş matematik öğretiminin öğrencilere matematik başarısı, özyeterlik algılarına ve matematiğe ilişkin inançlarına etkisi araştırmanın problem durumunu oluşturmaktadır.

1.2. Araştırmanın Önemi

Matematik tarihi, matematiksel bilginin medeniyetler boyunca nasıl değişip geliştiğini gösterir. Matematiğin bilim ve teknolojideki yerini herkes tarafından kabul görmesine karşın insanlığun bir ürünü olarak ortaya çıkan matematiğin, doğasını ve amacını odak noktası yapan çalışmalar olarak ilginizin az olduğunu vurgulamaktadır (Baki, 2014. s. 4). Bu nedenle bu çalışma tarihsel bağlamlarla desteklenen matematik öğretimiyile ilgili yapılacak çalışmalar rehberlik edebilir.

Son yıllarda matematik tarihinin matematik öğretimine nasıl dahil edilmesi gerektiğini düşüncesi araştırmacılara ilgisini çekerek popüler bir konu olmaktadır (Bütün,

Matematik tarihi, öğrencilerin matematiği daha geniş bir bakış açısıyla incelemesini ve daha derin anlamalarını sağlar (Dubey ve Singh, 2013, s. 2). Matematik tarihinden yararlanmak, matematiği öğrenmede önemli bir aracıdır (Haile, 2008, s. 1). Matematik öğretimini tarihsel bağlamlardan yararlanarak uygulamak, öğrencilerin matematiği anlamalarını desteklediği ve öğrencilerin matematikin önemine olan farkındalığı artırduğu düşünülmektedir (Bellomo ve Wertheimer, 2010, s. 19-24). 2013 yılında Milli Eğitim Bakanlığı'nın Talim Terbiye Kurulu Başkanı tarafından ilköğretim matematik dersi öğretim programının güncellenmesi ile öğrenen açısından matematik derslerinin daha
anlamlı hale gelmesi için tarih dersinin matematik dersini tarihsel bağlamlarla desteklemesi, önerisi matematik tarihinin gerekliğini ortaya koymaktadır. Matematik tarihile zenginleştirilmiş öğrenme ortamlarını oluşturarak matematiğin daha anlamlı ve kolay anlaşılabilir olmasını sağlamak ve öğrenciye farklı, ilgi çekici yaşantılar kazandırmak açılarından matematik dersini tarihsel bağlamlarda desteklemenin önemli olduğu düşünülmektedir.

1.3. Araştırmanın Amacı

Bu araştırmanın amacı, tarihsel bağlamlarla desteklenen matematik öğretiminin beşinci sınıf öğrencilerinin matematik başarısına, özyeterlik algısına ve matematiğe ilişkin inançlarına etkisi belirlenmektedir.

1.4. Problem Cümlesi

Tarihsel bağlamlarla desteklenen matematik öğretiminin 5. sınıf öğrencilerinin matematik başarılara, özyeterlik algılara ve matematiğe ilişkin inançlara etkisi nedir?

1.4.1. Alt problemler

1. Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin başarı testi ön test ve son test puanları arasında anlamlı bir fark var mıdır?

2. Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin başarı testi ön test ve son test puanları arasında anlamlı bir fark var mıdır?

3. Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin başarı testi son test puanları arasında anlamlı bir fark var mıdır?

4. Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin özyeterlik algı ölçüğü ön test ve son test puanları arasında anlamlı bir fark var mıdır?
5. Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin özyeterlik algı ölçüleri ön ve son test puanları arasında anlamlı bir fark var mıdır?

6. Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin özyeterlik ölçüğü son test puanları arasında anlamlı bir fark var mıdır?

7. Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin matematik inanç ölçüğü ön test ve son test puanları arasında anlamlı bir fark var mıdır?

8. Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçüğü ön test ve son test puanları arasında anlamlı bir fark var mıdır?

9. Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçüğü son test puanları arasında anlamlı bir fark var mıdır?

1.5. Araştırmanın Sınırlılıkları

Bu araştırma;

1. Araştırma ortami ve çalışma grubu açısından, Denizli ili Pamukkale İlçesi’ndeki Milli Eğitim Müdürlüğü’ne bağlı bir devlet ortaokulu ile bu ortaokulu beşinci sınıfında öğrenim gören toplam 44 öğrenci ile sınırlıdır.

3. Öğrenme alanı açısından, MEB matematik öğretimi programında yer alan sayılar öğrenme alanındaki kazanımlar ile sınırlıdır.

4. Deneysel uygulamalar açısından, matematik tarihinden seçilen Mısır Sayı Sistemi ve İnka Uygarlığına ait Kipu Yöntemi’nin kullanılamasıyla sınırlıdır, ayrıca
problem çözme tekniklerinden biri olan Polya’nın problem çözme basamakları kullanılmastıyla sınırlıdır.

1.6. Araştırmanın Varsayımaları

Araştırmada dışsal değişkenlerin, araştırmanın içsel geçerliliğini etkilemediği, varsayılmaktadır.
İKİNCİ BÖLÜM: ALANYAZIN TARAMASI

Bu bölümde araştırmanın kuramsal çerçevesi, ilgili araştırmalara ilişkin açıklamalar ve araştırma özetleri bulunmaktadır.

2.1 Matematik Felsefesi ve Matematik Tarihiyle İlişkisi

- Matematiğin odağı nedir?
- Matematiği oluştururuda, matematiğin rolü nedir?
• Bireylerin öznel bilgileri nasıl nesnel duruma gelmektedir?
• Matematiksel bilgi nasıl evrilmektedir?
• Matematik tarihi matematik felsefesine nasıl ışık tutar?
• Matematikle insanlığın bilgi ve deneyimleri arasındaki ilişki nedir?
• Pür matematiğin teoremlerinin fen ve nesnel problemlerin çözümünde neden güçlü ve yararlıdır? (s. 25).

2.2 Matematik Öğretimi

Matematik, insan zihni tarafın oluşturulan soyut bir sistemdir. Bu durum ise matematiğin soyut olması kaynaklı eder (Baykul, 1999, s. 36). İnsan zekasının bir ürünü olan; akıl yürütme, varsayımda bulunma, çıkarılma ve keşfetme etkinliklerinin matematiğin temelini oluşturur. Böylelikle matematik bir soyutlama etkinliğine dönüşür (Baki, 2014, s. 174). Kavramsal bilgi, anlamın önemli olduğu bireyin kendi içselleştirilmiş olduğu bilgidir. İşlemsel bilgi ise kural ve işlemlerle matematiksel bilgiyi temsil eden sembollerleri içerir (Olkun ve Toluk, Uçar, 2006, s. 8).

MEB (2013a, s. 3) yapılan son değişikliklerle matematik eğitiminin amaçlarını bu şekilde açıklanabilir;
• Matematiksel kavramları anlayabilecek, bunlar arasında ilişkiler kurabilecek, bu kavram ve ilişkileri günlük hayatta ve diğer disiplinlerde etkin olarak kullanabilecektir.
• Matematikle ilgili alanlarda ileri bir eğitim alabilmek için gerekli matematiksel bilgi ve becerileri kazanabilecektir.
• Problem çözme sürecinde kendi düşünce ve akıl yürütmenlerini ifade edebilecektir.
• Matematiksel düşüncelerini mantıklı bir şekilde açıklamak ve paylaşmak için matematiksel terminoloji ve dili doğru kullanabilecektir.
• Tahmin etme ve zihinden işlem yapma becerilerini etkin kullanabilecektir.
• Problem çözme stratejileri geliştirebilecek ve bunları günlük hayatta problemlerin çözümünde kullanabilecektir.
• Kavramları farklı temsil biçimleri ile ifade edebilecektir.
• Matematiksel düşünmeler belirli olumsuz olsa da, işlerini iyi çözmek için matematiksel algı ve becerilerini etkin kullanabilecektir.
• Sistemli, dikkatli, sabırlı ve sorumlu olma becerilerini geliştirebilecektir.
• Araştırma yapma, bilgi üretme ve kullanma becerilerini geliştirebilecektir.

Matematik öğretiminin kalitesinin artırılabilmesi için, öğrencilerin matematiksel kavramları öğrenebilmesi, problem çözme becerilerinin gelişmesi gibi çeşitli ölçütler belirlenmektedir. Bu ölçütlerin gerçekleştirilmesi için somut materyallerden ve matematiksel kavramların tarihsel gelişimlerinden yararlanmalıdır (Yenilmez, 2011, s. 80).

2.3 Matematik Tarihinin Matematik Öğretimindeki Yeri ve Önemi

İnsan, yaptıklarının ve varlığınınยก래שקesiini açıklama karar verdiğinde iki soruyu derinlemesine düşünmesi gerekir; birincisi yapmakta olduğu işin yapmaya değer olup olmadığı, diğeri ise değeri ne olursa olsun neden yapmaka olduğudur (Hardy, 2005, s. 49). Bu bağlamda düşünüldüğünde, matematiksel bilgi, medeniyetler boyunca değişip gelişerek insanlığın bir uğraş alanı olarak karşımıza çıkmaktadır. Matematikin bu canlı, dinamik yapısına göre öğrencinin, matematikte değer vermesini sağlayacaktır (Baki, 2014, s. 3-6). Matematik dünyanın çeşitli yerlerindeki farklı uygarlıkların tarihleriyle felsefeleriyle ilişkili kültürel bir alı oluşturur (Ying, Huang ve Su, 2015, s. 3).

Radford (1997, s. 26) matematik tarihinin sınırlı matematik tarihinden yararlanmanın bir yolunun tarihsel anekdotlardan yararlanmaktır. Ancak tarihle modern

Matematikçilerin nasıl çalıştığını ile ilgili bilgi vererek öğrencilerin örnek almasını sağlayabilir. Matematik tarihi sezginin, varsayımın ve kanıt oluşturmanın matematikçi için önemli etkinlikler oluşturduğuunu gösterir. Matematığı tarihsel bağlamlarıyla ele almak matematiğin düşünce dünyamıza nasıl yön verdiği ve değiştirdiğinin farkına varamızı sağlar (Baki, 2014, s. 4-5).

2.4 **Problem Çözmeye Kavramsal Bakış**

Problem çözmenin bir beceri haline dönüşmesinde, çözülebilmesi için yeterli bilginin olması durumunda bile herkesin çözmemesi odak noktası kabul edilirken problemin çözümünün farkına varıldığı kritik zaman, beceri haline dönüşmesini sağlar (Umay, 2007, s. 138).
Matematik eğitiminin temel amaçlarından biri, öğrencilerin problem çözme becerilerini geliştirmektir. Problem çözme matematigin her konusunda geliştirilmesi beklenen bir beceri olarak düşündüğünde ortaokul öğretim programında oldukça önemli bir yere sahiptir. Öğrencilerin problem çözme becerilerini etkileyen süreçlerde beklenen göstergeleri sıralamak mümkündür. Bunlar; verilen ve istenenleri belirleme, çözüm için gereklı olan bilgileri saptama, problemin bilinmeyen kısımlara göre alt bilinmeyenlere ayırma, öğrencinin kendi ifadesiyle açıklamasını sağlama, problem durumunu söyle, sembolik tablo ve gösterimlerle açıklama aynı zamanda ilişkilendirme, ilişkileri düzenleyerek hipotez oluşturma, problem çözümüne ilişkin uygun stratejiyi analiz etme, çözümle ilgili gerekli işlemleri yürütme, sonuçları tahmin etme, sonuçların doğruluğunun değerlendirilmesi, kullanmış olduğu çözümü farklı problem durumlarına uyarlama, problem çözümünün diğer durumlara genelleme ve gerçekle problem durumlarını oluşturabilmedir (MEB, 2013a, s. IV).

2.5 Polya’nın Problem Çözme Süreci

Tarihsel bağlamlarla desteklenen matematik öğretiminde, tarihsel bağlam olarak Mısır Sayı Sistemi ve Kipu Yöntemi’nden yararlanılmış, derslerde Polya’nın problem çözme basamakları temel alınarak ders planları oluşturulmuştur.

I) Problemi anlama

2) **Planı tasarlama**

3) **Planı uygulama**

Çözüm planını uygulayarak adımlarını kontrol ettin mi ve adımlarının doğruluğunu açık bir biçimde görebiliyor musun? Bu sorular doğrultusunda planı tasarlanan problem çözümünün gerçekleştirilmesi istenir.

4) **Çözümü test etme**

2.6 **Özyeterliliğe kavramsal bakış**

1) **Kişisel yaşantılar**

Bireyin, özyeterlik algısına dair bilgisi gerçek yaşamlarından elde ettiği bilgisidir. Kişinin başarıları, güçlü bir özyeterlik algısına sahip olmadığını sağlamırken diğer taraftan başarısızlıklar kişinin özyeterlik algısının düşmesine neden olur (Bandura, 1997, s. 80).
2) **Dolaylı yaşantılar**

Dolaylı yaşantılar, insanların bilgi kaynağı doğrudan yaşantılarla kazanıldığı gibi dolaylı yaşantılarla da elde edilir. İnsanlar başka birini gözlemleyerek onların yaşantılarından etkilenebilir kendini değerlendirebilir (Bandura, 1997, s. 86-100).

3) **Sözel kan**

Bireyin, bir işi başarabilmek amacıyla, o iş için yetenekli olduğuna dair diğer insanlar olumlu ifadeler kullanımlarla, bu onun başarıya ulaşması için çaba sarf etmesini sağlar (Bandura, 1997, s. 101-102).

4) **Fizyolojik ve duyuşsal durumlar**

Oolumlu fizyolojik ve duyuşsal durum, bireyin özüyeterlik algısını artırırken stres altında kalan bireylerin özüyeterlik algılarının güçlü olmasından bahsedeilemez (Bandura, 1997, s. 106-111).

2.7 **Matematiksel özüyeterlik**

Özüyeterlik algıları, insan davranışlarını üç farklı yönden etkilemektedir. Birinci; davranış seçimlerinde insanı kendine güvenen ve yetenekli hissettirir. İkinci olarak; bir etkinlik karşısında ne kadar fazla çaba sarf edebileceğini ve ne kadar uzun süre sabredebileceğini belirlemesine yardımcı olur. Son olarak da özüyeterlik inancı, insanların kişisel düşünce modellerini duygusal tepkilerini etkiler (Pajares, 1995, s. 4). Özüyeterlik algısı, öğrencilerin zorluklar karşısında direnebileceğini konusunda etkilidir.

Özüyeterlik, yeni bir öğrenmenin sağlanabilmesi için kritik bir duyuşsal beceridir. Okullarda matematik öğrencilerin en çok korktuğu dersler arasında yer almaktadır (Tuğran, 2015, s. 49). Okullarda özüyeterlik algısının gelişmesi için çeşitli yöntemlere yer verilebilir. Güçlü özüyeterlik algısına sahip öğrenciler bir işi başararak için çaba gösterecekler, olumsuz durum karşısında sabırlı davranacaklardır (Aşkar ve Umay, 2001, s. 7).

2.8 **Matematiksel inanç**

Raymond (1997) matematiksel inançları, geçmiş matematik deneyimlerini doğrultusunda gelişen kişisel değer yargılıarı olarak açıklamaktadır. Bu inançları üç

- Matematik eğitimi ile ilgili inançlar; a) konu alanı olarak matematik, b) matematiği öğrenme ve problem çözme ile ilgili inançlar, c) genel olarak matematik öğretimi ile ilgili inançlar.
- Öz ile ilgili inançlar; a) özyetlerlik inançları, b) kontrol inançları, c) görev değer inançları, d) amaç- oryantasyon inançları.
- Sosyal içerikle ilgili inançlar; a) kendi sınıftaki normlarla ilgili inançlar (öğretmen ve öğrenci rolleri), b) kendi sınıftaki sosyo-matematiksel normlarla ilgili inançlardır (akt. Jankvist, 2012, s. 849-850).

İnançlarla ilgili olarak belirtilen üç ana başlığa ek olarak bir disiplin olarak matematiği farklı bir boyut olarak incelemek gerekir (Jankvist, 2012, s. 849). Daha açık bir şekilde açıklamak gerekipse Şekil 2.1 ‘de ayrıntılı olarak sunulmuştur.

Şekil 2.1 Öğrencilerin matematikle ilişkili inanç sistemlerinin boyutları

Bir disiplin olarak matematiğin gösterilen şekilde ifade edilmesi birinci şekilde öğrencinin bakış açısını kapsayan üç farklı durumdan söz edilebilir. Bu durumlar;
öğrencilerin matematiğe ilişkin inançlarını geliştirmek için sosyal içerikle, matematik eğitimi ve özü arasındaki etkileşimi gerektirir. Bir disiplin olarak matematik aynı düzlemde yer almayıp üst tarafta dönmesi diğer durumlara olan farkını ortaya koyar. Bu durum ikinci figürde gösterilen tetrahedrondaki üçgeni gösterir.

- İnançlar oldukça erken yaşlarda oluşmakta ve zaman, okul ve deneyimle yaşanan çelişkili durumlarda bile devamlılık sağlamaktadır.
- İnanç yapılarının filtreleme etkisi vardır ve ileriki düşünce, bilgi edinme süreçlerini sürer, bozar, yeniden tanımlar ve şekillendirir.
- Doğaları ve kaynakları gereği bazı inançlar diğerlerine göre daha zor değiştirilebilir.
- Bir inanç, inanç sistemine ne kadar erken girerse, onu değiştirmek o kadar zordur. Yeni kazanılan inançlar eskiye oranla değişime daha açıktr.
- Yetişkinlerin inançlarındaki değişiklik, oldukça enderdir. Bireyler kendilerine sunulan bilimsel doğrulara rağmen, yanlış ya da eksik bilgiye dayalı inançlara tutunmaya eğilimlidirler.
- Bireyin inançları, davranışlarını güçlü bir şekilde etkiler.
- İnançlar gözlenemezler, bireyin ifadeleri arasındaki uyuma, davranışındaki eğilime ve gözlemленen davranışları incelenerek çıkartılar yapılabilir (akt. Toluk, Uçar ve diğerleri, 2010, s. 134).

2.9 İlgili Araştırmalar

2.9.1 Matematik tarihi ile ilgili araştırmalar

Başıbüyük (2012), matematik tarihinin matematik derslerinin öğretiminde kullanılması: İbrahim Hakkı Perspektifi ve Babil Yöntemi örneği’ adlı yüksek lisans tez çalışmasını 77 meslek yüksekokulu öğrencisi ile yürütütmüştür. Çalışmanın amacı; kareköklü sayıların yaklaşık değerini bulmak için kullanılan, İbrahim Hakkı’nın kullanmış olduğu yöntemi, Babil Yöntemi ve MEB ders kitaplarında yer alan yöntemlerin öğrenci

varyans analizi kullanılmış olup sonuç olarak; öğretmen adaylarının matematik tarihi bilgisi sınıf düzeyi ilerlediçe arttığı ortaya çıkmıştır. Ayrıca programın ilk yarısında erkek öğretmen adaylarının kadın öğretmen adaylarından anlamli düzeyde daha yüksek matematik tarihi bilgisi ortalama puanına sahip olmuşlardır. Fakat programın son yarısında tersi bir durum ortaya çıkmıştır.

Yenilmez (2011) matematik öğretmen adaylarının matematik tarihi dersine ilişkin düşüncelerini ortaya çıkarma amacıyla gerçekleştirmiş olduğu çalışmasını 121 öğretmen adayıyla yürütülmüştür. Araştırmanın sonuçları incelendiğinde; öğretmen adaylarının genel olarak konuların tarihsel gelişimiyle ilgili bilgi sahibi olmanın yararlı olduğunu inandıkları ortaya çıkmıştır. Ayrıca öğretmen adaylarının, matematik tarihi dersinin gerekli olduğu öne sürülmüştür.

Gürsoy’un (2010) çalışmasının amacı; matematik tarihini matematik öğretiminde bütünleştirmesile ilgili öğrenmenin adaylarının düşüncelerinin saplanması, matematik tarihini matematik öğretiminde kullanılmışlarının inanc ve tutuma olun etkisini ortaya çıkarmaktır. Veriler matematik tarihi inanc ve tutum ölçüyü Ayrıca görüşmeler aracılığıyla elde edilmiştir. Araştırmanın bulguları incelendiğinde, matematik tarihini matematik öğretiminde kullanılmasına ilişkin tutumları olumlu yönde etkilediği ve yapılan görüşmeler
sonucunda matematik tarihinin matematik öğretiminde kullanılabileceği ortaya çıkmıştır.

Goodwin (2007) çalışmasında, lise öğretmenlerinin matematik tarihi bilgisi ile matematıkta dair düşünceleri arasındaki ilişkiye ortaya çıkarmayı amaçlamıştır. Çalışma California’da rastgele seçilen 300 lisedeki 900 matematik öğretmeninin katılımıyla gerçekleştirilmiştir. Çalışma üç soru çerçevesinde yürütülmüştür. Bu sorular; öğretmenlerin matematikle ilgili ne gibi düşüncelere sahip olduklarını, matematik tarihyle ilgili bilgileri ve matematik tarihi bilgileri ve matematıkkade dair düşünceleri arasındaki ilişkinin ne olduğu ile ilgilidir. Araştırma sonuçları; matematığın insan bilgisine eşsiz katkı sağladığı, matematığın herkes için olduğu ortaya çıkmıştır. Ayrıca matematik tarihinin sınıf
ortamında uygulanmasının hem öğretmen hem de öğrenci açısından yarar sağlayabileceği araştırmanın dikkat çeken sonuçları arasında kabul edilebilir.

ÜÇUNCÜ BÖLÜM: YÖNTEM

Bu bölümde; araştırmanın desenine, değişkenlerine, çalışma grubuna, araştırmada kullanılan veri toplama araç ve tekniklerine, veri toplama sürecine ve verilerin analizine ilişkin bilgilere yer verilmiştir.

3.1 Araştırmada Desen

Tablo 3.1.
Araştırma Deseninin Tablosal Gösterimi

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>Ön-test</th>
<th>Deneysel işlem</th>
<th>Son-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Matematik özyeterlik ölçeği</td>
<td>Tarihsel bağlamlarla desteklenen matematik öğretimi</td>
<td>Matematik özyeterlik ölçeği</td>
</tr>
<tr>
<td>Deney Grubu</td>
<td>Matematik başarı testi</td>
<td></td>
<td>Matematik başarı testi</td>
</tr>
<tr>
<td>Deney Grubu</td>
<td>Matematik inanç ölçeği</td>
<td></td>
<td>Matematik inanç ölçeği</td>
</tr>
<tr>
<td>Gruplar</td>
<td>Ön-test</td>
<td>Deneysel işlem</td>
<td>Son-test</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Matematik özyeterlik ölçüğü</td>
<td>Matematik Ders Programının öngördüğü etkinliklere göre düzenlenen öğretim</td>
<td>Matematik özyeterlik ölçüğü</td>
</tr>
<tr>
<td></td>
<td>Matematik başarı testi</td>
<td></td>
<td>Matematik başarı testi</td>
</tr>
<tr>
<td></td>
<td>Matematik inanç ölçüğü</td>
<td></td>
<td>Matematik inanç ölçüğü</td>
</tr>
</tbody>
</table>

3.2 Araştırmanın Değişkenleri

Araştırmanın, bağımlı ve bağımsız değişkenlerine ilişkin bilgiler aşağıda ifade edilmiştir.

3.2.1 Araştırmanın bağımsız değişkenleri

Araştırmanın bağımsız değişkeni; tarihsel bağlamlarla desteklenen matematik öğretimi ve matematik ders programının öngördüğü etkinliklere göre düzenlenen öğretimidir.

3.2.2 Araştırmanın bağımlı değişkenleri

Araştırmanın bağımlı değişkenlerini; matematik başarı testinden elde edilen ön-test ve son-test puanları, matematiğe karşı özyeterlik algısı ölçüğinden elde edilen ön-test ve son-test puanları ve matematik inanç ölçüğinden elde edilen ön-test ve son-test puanları oluşturmaktadır.

3.3 Araştırmanın Çalışma Grubu

Çalışma gruplarının denk olup olmadıklarını belirlemek amacıyla, deneySEL işlem öncesinde uygulanan ön test sonuçları ilişkisiz örneklemler t-testi ile analiz edilmiş ve ön test puanlarına ilişkin bulgular Tablo 3. 2, Tablo 3. 3. ve Tablo 3. 4’te sunulmuştur.

Tablo 3. 2.

Deney ve Kontrol Gruplarında Öğrencilerin Matematik Başarı Testi Ön- Test Puanlarına İlişkin t-testi Sonuçları

<table>
<thead>
<tr>
<th>Grup</th>
<th>N</th>
<th>\bar{X}</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>22</td>
<td>10.23</td>
<td>4.264</td>
<td>42</td>
<td>0.301</td>
<td>0.765*</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>22</td>
<td>9.86</td>
<td>3.719</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p > .05 Anlamlı düzeyde fark yoktur

Tablo 3. 2.’de görüldüğü gibi ilişkisiz örneklemler t-testinden elde edilen sonuçlar, deney ve kontrol grubu öğrencilerinin ön-test puanları arasında istatistiksel olarak anlamlı bir fark olmadığını göstermektedir [$t(42)=0.301, p>.05$]. Diğer bir deyişle, deney ve kontrol grubunda yer alan öğrencilerin matematik başarısı bakımından birbirine denk olduklarını söyleyebilir.

Tablo 3. 3.

Deney ve Kontrol Gruplarında Öğrencilerin Matematik İnanç Ölçeği Ön-Test Puanlarına İlişkin t-testi Sonuçları

<table>
<thead>
<tr>
<th>Grup</th>
<th>N</th>
<th>\bar{X}</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>22</td>
<td>4.19</td>
<td>0.363</td>
<td>42</td>
<td>1.031</td>
<td>0.308</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>22</td>
<td>4.09</td>
<td>0.234</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p > .05 Anlamlı düzeyde fark yoktur

Tablo 3. 3.’de görüldüğü gibi ilişkisiz örneklemler t-testinden elde edilen sonuçlar, deney ve kontrol grubu öğrencilerinin ön-test puanları arasında istatistiksel olarak anlamlı bir fark olmadığını göstermektedir [$t(42)=1.031, p>.05$]. Bu veriye dayanarak grupların deneySEL işlem öncesinde Matematik İnanç Ölçeğinden elde ettiği puanlar açısından denk olduğu söylenebilir.
Tablo 3. 4.

Deney ve Kontrol Gruplarındaki Öğrencilerin Matematiğe İlişkin Özyeterlik Algı Ölçeği Ön- Test puanlarına ilişkin t-testi sonuçları

<table>
<thead>
<tr>
<th>Grup</th>
<th>N</th>
<th>\bar{X}</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>22</td>
<td>2.99</td>
<td>0.315</td>
<td>42</td>
<td>-0.218</td>
<td>0.828*</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>22</td>
<td>3.00</td>
<td>0.372</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p > .05 Anlamlı düzeyde fark yoktur

Tablo 3. 4.’de görüldüğü gibi ilişkisiz örneklemeler t-testinden elde edilen sonuçlar, deney ve kontrol grubu öğrencilerinin ön-test puanları arasında istatistiksel olarak anlamlı bir fark olmadığını göstermektedir [$t(42)=-0.218, p>.05$]. Bu veriye dayanarak grupların deneysel işlem öncesinde Matematiğe karşı Özyeterlik Algı Ölçeğinden elde ettiği puanlar açısından denk olduğu söylenebilir.

Bu bağlamda çalışma gruplarının yukarıdaki ölçütlere göre denklikleri sağlandıktan sonra, yansız olarak 5-A sınıf tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubu ve 5-B sınıf matematik ders programının öngörüdüğü etkinliklerin uygulandığı kontrol grubu olarak belirlenmiştir.

3.4 Veri Toplama Araçları

3.4.1 Matematik Başarı Testi

Araştırmada kullanılan matematik başarı testi, öğrencilerin matematik başarı düzeylerini belirlemek amacıyla araştırmacı tarafından geliştirilmiş. Ortaokul Matematik Dersi Öğretim Programının ‘Sayılar’ öğrenme alanıyla ilgili başarı testinin hazırlanması, aşağıda verilen aşamalarda gerçekleştirilmiştir.

2. Ölçme aracının kapsam geçerliliğini saptamak için seçilen kazanımlar çerçevesinde ‘Sayılar’ öğrenme alanı ile ilgili belirtke tablosu hazırlanmıştır. Belirtke tablosu Ek-(1)’de sunulmuştur.

<table>
<thead>
<tr>
<th>Başarı Testine İlişkin İstatistiksel Değerler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deneme formu</td>
</tr>
<tr>
<td>Soru sayısı</td>
</tr>
<tr>
<td>Uygulanan Kişi Sayısı</td>
</tr>
<tr>
<td>Ortalama</td>
</tr>
<tr>
<td>Varyans</td>
</tr>
<tr>
<td>Standart Sapma</td>
</tr>
<tr>
<td>Cronbach Alpha</td>
</tr>
<tr>
<td>Ortalama Madde Ayırt ediciliği</td>
</tr>
</tbody>
</table>

3.4.2 Matematiğe Karşı Özyeterlik Algısı Ölçeği

Araştırmada özyeterlik algısı ile ilgili problem ve alt problemlere yanıt verebilmek amacıyla, Umay (2001) tarafından geliştirilen ‘Matematiğe Karşı Özyeterlik Algısı Ölçeği’
kullanılmıştır. Ölçeğin Cronbach Alfa Güvenirlik katsayısı 88 olarak belirtilmiştir. Çalışmada kullanılan ölçek, 14 madde şeklinde oluşturulmuştur. Bu maddelerden 8 tanesi olumlu (1, 2, 4, 5, 8, 9, 13, 14) ve 6 tanesi olumsuz (3, 6, 7, 10, 11, 12)’dur. Öğrencilerin matematik özüyeterlik algısını ortaya çıkarmak için geliştirilen ölçekte maddeler, ‘hiçbir zaman’, ‘ender olarak’, ‘bazen’, ‘çoğu zaman’, ‘her zaman’ şeklinde olup öğrencilerin kendilerini ifade etmeleri için beş seçenek bulunmaktadır. ‘Matematiğe Karşı Özüyeterlik Algısı Ölçeği’ EK(4)’de ve ölçeğin kullanma izni EK(5)’de yer almaktadır.

3.4.3 Matematik İnanc Ölçeği

Araştırmada Çayır, Yıldırım (2003) tarafından geliştirilen matematik inanç ölçeği kullanılmıştır. Veri analizi sırasında ölçek alt ölçeklere ayrılmıştır. Bunlar matematik eğitimiyle ilgili inançlar, kendilerine ilişkin inançlar ve sosyal ortamla ilgili inançlardır. 21 maddeden oluşan ölçekte, matematiğin doğasına ilişkin inançlar alt boyutunda 7 madde, kendilerine ilişkin inançlar alt boyutunda 9 madde ve sosyal ortamla ilgili inançlar alt boyutunda ise 5 madde yer almaktadır. Matematiğin doğasına ilişkin inançlar alt boyutunun Cronbach’s Alpha iç tutarlık katsayısı 0.67, kendilerine ilişkin inançlar alt boyutunun 0.68 ve sosyal ortamla ilgili inançlar alt boyutunun ise 0.39’dur. Matematiğin doğasına ilişkin inançlar alt boyutunun aritmetik ortalama 28.30 ve standart sapması 3.98, kendilerine ilişkin inançlar alt boyutunun aritmetik ortalama 36.10 ve standart sapması 4.99 ve sosyal ortamla ilgili inançlar alt boyutunun aritmetik ortalama ise 20.61 ve standart sapması 2.74’tür. Matematik inanç ölçeği Ek(6)’da yer almaktadır.

3.5 Veri Toplama Süreci

3.5.1 Verilerin Toplanması

Araştırmda, problem ve alt problemlere yanıt verebilmek amacıyla veri toplama işlemi ifade edilen şekilde gerçekleştirilmştir.

3. Haftada beş saat olmak üzere, altı hafta boyunca toplam 30 ders saatı deney ve kontrol gruplarındaki matematik dersleri araştırmacı tarafından yürütülmüştür.

3.5.2 Deney grubunda gerçekleştirilen ön deneme uygulaması

Araştırmanın ön deneme uygulaması araştırmacı tarafından Denizli merkezdeki bir ortaokulda uygulamadan bir dönem önce gerçekleştirilmştir. Ön deneme uygulaması bir haftalık bir süre boyunca toplam 30 saat kapsamaktadır. Tarihsel bağlamlarla desteklenen matematik öğretmeninin uyguladığı deney grubunda öncelikle olarak iki ders saatı süresi boyunca Mısır Sayı Sistemi’ne ait bilgi verilmiştir. Bilgilendirme kapsamında

Problem durumlarında disiplinler arasında bir yaklaşım sergilenmeye çalışılarak matematik dersleri tarihsel bağlanda ele alınmaya çalışılmıştır. Sayılar öğrenme alanındaki toplam 11 kazandırmalı işıkli olarak hazırlanan problem durumları çeşitli kaynaklar dikkate alınarak araştırmacı tarafından oluşturulmuştur. Problem durumlarının matematik tarihiyle ilgili bölümleri Sertöz (2012, s. 14-17), Dönmez (2002a, s. 15-30; 2002b, s. 201-207; 2003,

Polya’nın problem çözme basamakları temel alınarak bu basamaklardaki sorulması gereken sorulara dikkat edilerek yapılandırılmıştır. Dersin giriş kısmında öğrencilere bir matematik bilim insanın hayat öyküsüyle ilgili araştırma ödevi verilmiş ve matematikçilerin hayat hikayeleriyle ilgili paylaşımlarda bulunmaları istenmiştir. Öğrencilerle ünlü matematikçilerin hayatındaki dikkat çeken noktaların neler olduğunu sorularak küçük bir tartışma ortamı oluşturularak dikkatin konuya çekilmesi sağlanmak istenmiştir. Dersin sonraki aşamasında Polya’nın problem çözme basamakları temel alınarak yapılmış, öğrenme etkinliklerinde, öğrenciler öncelikle problemimizi anlayalım ve yansıtalım bölümüyle karşılaşılmışlardır. Bu bölümde öğrenciler;

- ‘Problemimizin verileri nelerdir?’,
- ‘Problemimizin bilinmeyenleri nelerdir?’,
- ‘Problemimizi şekilsel olarak gösterebilir miyiz?’

Soruları yöneltilerek öğrencilerin problemleri anlamlandırılması, problemü düşünmeleri ve öğrencilerden uygun bir çözüm stratejisi geliştirilir. İlkinci bölüm olarak çözüm planımızı tasarlayalım ve uygulayalım bölümüne öğrenciler;

- ‘Verilenler ve bilinmeyen arasında bağlantı kurabiliyor muyuz?’,
- ‘Çözüm planımızı uygulayalım’

Soruları yöneltilerek problem üzerinde düşünmeleri istenmiştir. Öğrencilerden uygun bir çözüm stratejisi geliştirip tasarlanan problemin çözümünü gerçekleştirmeleri beklenmiştir. Son olarak çözümü test edelim bölümünde,

- ‘Sonuçları kontrol edebilir miyiz?’

Şekil 3.1 Deney grubu öğrenme süreci etkinliği

Matematikle tarihi ilişkilendirek bağlın kurulmaya çalışılmıştır. Ayrıca Kipu Yöntemi’yle ilgili bilgi verilerek düğümlü iperlerden bahsedilerek basamak kavramı vurgulanmaya çalışılmıştır. Mısır Sayı Sistemi’nde birden dokuza kadar rakamların tek çizgiler halinde gösterildiği daha büyük basamakların ise hiyeroglif biçiminde yazıldığı ifade edilmiştir. Bu hiyeroglifler sınıfta açıklanmıştır. Ayrıca öğrencilere uygulama süresince sınıfta grupların oluşturulacağı her gruba çalışma yaprakları verileceği söylenmiştir. Öğrencilere rehber olması açısından araştırmacı tarafından öğrenci rehberi...
oluşturularak öğrencilere dağıtılmıştır, Öğrenci rehberi Ek (10). Matematik tarihi ile ilgili kaynakların kısıtlı olduğu ve kolay ulaşılamadığından ilgili kaynaklar sınıf ortamına getirerek öğrencilerin bu kaynakları incelemesi sağlanmıştır.

3.6.2 Kontrol Grubunda Yapılan İşlemler

Araştırmannın kontrol grubunda uygulanan işlemler, Matematik Ders Programının öngörüdüğü etkinliklere göre gerçekleştirilmiştir. Öğretim süreci deney grubuya paralel ilerlemiş, bu süreçte MEB’in beşinci sınıf sayılar öğrenme alanıyla ilişkili olan etkinlikler uygulanmıştır. Kontrol grubundaki araştırma sürecini daha ayrıntılı bir şekilde sunmak için bir uygulama örneğine Şekil 3. 2’de yer verilmiştir.

Şekil 3.2 Kontrol grubu öğrenme süreci etkinliği

3.7 Verilerin Analizi

Matematik başarı testi, matematiğe karşı özüyeterlik ölçeği ve matematik inanç ölçeğinden elde edilen puanlar, SPSS 16.00 paket programından yararlanılarak istatistiksel analizler yapılmıştır.

İstatistiksel analizler için ilişkisiz örneklemler *t*-testi ve ilişkili örneklemler *t*-testi kullanılmıştır. Çalışma gruplarının kendi içinde deneysel işlem öncesinde ve sonrasında uygulanan Matematik Başarı Testi, Matematik Karşı Özyeterlik Algı Ölçeği ve Matematik İnanç ölçeğinden elde edilen puanlar arasında anlamlı bir fark olup olmadığını incelemek için ilişkili örneklemler *t*-testi kullanılmıştır. Araştırma grupları arasında karşılaştırma yapabilmek amacıyla, gruplara deneysel işlem sonrası uygulanan Matematik Başarı Testi, Matematiğe Karşı Özyeterlik Algı Ölçeği ve Matematik İnanç Ölçeğinden elde edilen son-test puanları arasında anlamlı bir fark olup olmadığını incelemek için ilişkisiz örneklemler *t*-testi kullanılmıştır. Araştırıldında elde edilen sonuçlar 0.05 anlamlılık düzeyi kullanılarak yorumlanmıştır.
3.8 Araştırmaın Geçerliliği

3.9 Araştırmacının Rolü

DÖRDÜNCÜ BÖLÜM: BULGULAR

Araştırmanın bu bölümünde; bulgular alt problemlere göre üç bölüm şeklinde sunulmuştur. Bu bölümler; matematik başarı testine ilişkin bulgular, matematiğe karşı özyeterlik algı ölçeğine ilişkin bulgular ve matematik inanç ölçeğine ilişkin bulgularıdır.

4.1. **Matematik başarısına ilişkin bulgular**

Bu bölümde; matematik başarısı ile ilgili üç alt probleme ilişkin bulgulara yer verilmiştir.

4.1.1. **Araştırmanın birinci alt problemine ilişkin bulgular**

Araştırmanın birinci alt problemi, tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı gruptaki öğrencilerin başarı testi ön-test ölçümüne ait ortalama puanı ile son-test ölçümüne ait ortalama puanı arasında anlamlı bir fark olup olmadığı ile ilgilidir.

Öncelikle deney grubundaki öğrencilerin ön- test ve son-test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel tekninin kullanılacağına karar vermek amacı ile tek örneklem K-S testi uygulanmıştır. Elde edilen tek örneklem K-S testi analizi sonucunda deney grubu ön- test puanlarının (K-S (Z)= .526; p>0.05) ve son test puanlarının (K-S (Z)=.648; p>0.05) normal dağılım gösterdiği belirlenmiştir. Bu nedenle parametrik bir test olan ilişkili örneklemler için t-testi kullanılmıştır. Deney grubu matematik başarısı testi ön-test ve son-test ortalama puanları arasındaki farkın anlamlılığı için yapılan t-testi sonuçları Tablo 4.1’de verilmiştir.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>X</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Ön-test (matematik başarı testi)</td>
<td>22</td>
<td>10.23</td>
<td>4.264</td>
<td>21</td>
<td>-4.248*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Deney Grubu</td>
<td>Son-test (matematik başarı testi)</td>
<td>22</td>
<td>14.27</td>
<td>2.491</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<.05 Anlamlı düzeyde fark vardır
Tablo 4.1’de Tarihsel bağlamlarla desteklenen matematik öğretiminin kullanıldığı deney grubunun matematik başarı testi ön-test ölçeğine ait ortalama puanı ile son-test ölçümüne ait ortalama puanı arasında anlamlı bir fark olduğunu göstermektedir \([t(21)=-4.248; \ p< .05]\). Deney grubu başarı testi son- test puan ortalamasının \((\bar{X}=14.27)\), ön-test puan ortalamasından \((\bar{X}=10.23)\) yüksek olduğu görülmektedir. Bu bulguya dayanarak; tarihsel bağlamlarla desteklenen matematik öğretiminin deney grubundaki öğrencilerin matematik başarlıklarını artırmada önemli bir etkiye sahip olduğu söylenebilir.

4.1.2. Araştırmanın ikinci alt problemine ilişkin bulgular

Araştırmanın ikinci alt problemi Matematik Ders Programının öngördüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin başarı testi ön test ve son test puanları arasında anlamlı bir fark olup olmadığı ile ilgilidir.

Öncelikle kontrol grubundaki öğrencilerin ön-test ve son-test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel teknünün kullanılacağına karar vermek amacı ile tek örneklem \(K-S\) testi uygulanmıştır. Edileilen tek örneklem \(K-S\) testi analizi sonuçunda çalışma grubu ön-test puanlarının \((K-S (Z)= .686; \ p>0.05)\) ve son-test puanlarının \((K-S (Z)=.765; \ p>0.05)\) normal dağılım gösterdiği belirlemiştir. Bu nedenle parametrik bir test olan ilişkili örneklemler için \(t\)-testi kullanılmasına karar verilmiştir. Kontrol grubu matematik başarı testi ön-test ve son-test ortalama puanları arasındaki farkın anlamlılığı için yapılan \(t\)-testi sonuçları Tablo 4.2’de verilmştir.

Tablo 4.2.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>(\bar{X})</th>
<th>Ss</th>
<th>Sd</th>
<th>(t)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol Grubu</td>
<td>Ön-test (matematik başarı testi)</td>
<td>22</td>
<td>9.86</td>
<td>3.719</td>
<td>21</td>
<td>-1.108*</td>
<td>0.280</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Son-test (matematik başarı testi)</td>
<td>22</td>
<td>10.91</td>
<td>3.476</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p> .05 Anlamlı düzeyde fark yoktur

Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubunun matematik başarı testi ön-test ölçümüne ait ortalama puanı ile son-test ölçümüne ait ortalama puanı arasında anlamlı bir farklılık olduğu söylenebilir \([t(21)=-1.108; \ p> .05]\). Kontrol grubu başarı testi son- test puan ortalamasının \((\bar{X}=10.91)\), ön-test puan
ortalamasından (\(\bar{X} = 9.86\)) yüksek olmasına rağmen, aralarındaki farklı anlamlı değildir. Farklı bir söyleleme kontrol grubu uygulama öncesi ve uygulama sonrası matematik başarı testi puan ölçümü açısından birbirinden farklılaşmamaktadır. Bu bulguya dayanarak; matematik ders programının öngörüdüğü etkinliklerin öğrencilerin matematik başarılarınızı artırmada etkili olmadığını söylenebilir.

4.1.3. Araştırmanın üçüncü alt problemine ilişkin bulgular

Araştırmanın üçüncü alt problemi Tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile matematik ders programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin başarı testi son test puanları arasında anlamlı bir fark olup olmadığını ilgilidir.

Öncelikle çalışma gruplarındaki öğrencilerin son-test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel teknünün kullanılacağına karar vermek amacıyla tek örneklem K-S testi uygulanmıştır. Elde edilen tek örneklem K-S testi analizi sonucunda deney grubundaki öğrencilerin son-test puanlarının (K-S (Z)=. 648; \(p>0.05\)) ve kontrol grubundaki öğrencilerin son test puanlarının (K-S (Z)=.789; \(p>0.05\)) normal dağılım gösterdiği belirlenmiştir. Bu nedenle parametrik bir test olan ilişkisiz örneklem için \(t\)-testi kullanılmasına karar verilmiştir. Deney ve kontrol grubu matematik başarı testi son-test ortala puanları arasındaki farkın anlamlılığı için yapılan \(t\)-testi sonuçları Tablo 4.3. te verilmiştir.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>(\bar{X})</th>
<th>Ss</th>
<th>Sd</th>
<th>(t)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Son-test (matematik başarı testi)</td>
<td>22</td>
<td>14.27</td>
<td>2.491</td>
<td>42</td>
<td>3.689*</td>
<td>0.001*</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Son-test (matematik başarı testi)</td>
<td>22</td>
<td>10.91</td>
<td>3.476</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p< .05 Anlamlı düzeyde fark vardır

Tablo 4.3. tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile matematik ders programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin başarı testi son test puanları arasında anlamlı bir fark olduğunu göstermektedir [\(t(42)=3.689; \ p< .05\)]. Deney grubundaki öğrencilerin
matematik başarıları \((X = 14.27)\), kontrol grubuna \((X = 10.91)\) göre daha yüksektir. Bu bulgu, tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilerin matematik başarıları üzerinde anlamılı bir etkisi olduğunu göstermektedir. Test sonucu hesaplanan etki büyüklüğü \((d = 1.11)\) ise bu farkın yüksek düzeyde olduğunu göstermektedir. Bu bulguya dayanarak, tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilerin matematik başarılarını olumlu şekilde etkilediği söylenebilir.

4.2. Matematike karşı özyetlerlik algısına ilişkin bulgular

Bu bölümde; matematike karşı özyetlerlik algısı ile ilgili üç alt probleme ilişkin bulgulara yer verilmiştir.

4.2.1. Araştırmmanın dördüncü alt problemine ilişkin bulgular

Araştırmmanın dördüncü alt problemi tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin özyetlerliğe karşı özyetlerlik algı ölçüğü ön test ve son test puanları arasında anlamılı bir fark olup olmadığı ile ilgilidir.

Öncelikle deney grubundaki öğrencilerin ön- test ve son test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel tekninin kullanılacağını karar vermek amacıyla tek örneklem \(K-S\) testi uygulanmıştır. Elde edilen tek örneklem \(K-S\) testi analizi sonuçunda deney grubu ön-test puanlarının \((K-S (Z) = .771; p > 0.05)\) ve son-test puanlarının \((K-S (Z) = .721; p > 0.05)\) normal dağılım gösterdiği belirlenmiştir. Bu nedenle parametrik bir test olan ilişkili örneklemler için \(t\)-testi kullanılmaması karar verilmiştir. Deney grubu matematike karşı özyetlerlik algısı ölçüleri ön-test ve son-test ortalama puanları arasındaki farkın anlamılılıği için yapılan \(t\)-testi sonuçları Tablo 4.4’te verilmiştir.

Tablo 4.4.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test (özyetlerlik algı ölçüğü)</th>
<th>N</th>
<th>(\bar{X})</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Ön-test</td>
<td>22</td>
<td>2.99</td>
<td>0.315</td>
<td>21</td>
<td>-1.418*</td>
<td>0.171</td>
</tr>
<tr>
<td>Deney Grubu</td>
<td>Son-test</td>
<td>22</td>
<td>3.07</td>
<td>0.213</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p > .05 Anlamlı düzeyde fark yoktur
Tablo 4.3’e göre tarihsel bağlamlarla desteklenen matematik öğretiminin uygulanlığı deney grubunun matematiğe karşı özyeterlik algısı öncesi ön-test ölçümüne ait ortalama puanı ile son-test ölçümüne ait ortalama puanı arasında anlamlı bir farkılılık olmadığını söylenebilir \([t(21)=-1.418; \ p>.05]\). Deney grubu öğrencilerinin matematiğe karşı özyeterlik algı ölçüleri son-test puan ortalamasının \((\bar{x}=3.07)\), ön-test puan ortalamasından \((\bar{x}=2.99)\) yüksek olmasına rağmen, aralarındaki fark anlamılı değildir. Farklı bir söylemle deney grubu uygulama öncesi ve uygulama sonrası matematiğe karşı özyeterlik algı ölçüleri puan ölçümlerini açısından birbirinden farklılaşmamaktadır. Bu bulguya dayanarak; tarihsel bağlamlarla desteklenen matematik öğretiminin uygulanlığı deney grubunun öğrencilerin özyeterlik algılarını artırmada yeterli olmadığını söylenebilir.

4.2.2 Araştırmanın beşinci alt problemine ilişkin bulgular

Araştırmanın beşinci alt problemi Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin özyeterlik algı ölçüleri ön test ve son test puanları arasında anlamlı bir fark olup olmadığı ile ilgilidir.

Öncelikle kontrol grubundaki öğrencilerin ön-test ve son-test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel teknünün kullanılacağına karar vermek amacı ile tek örneklem \(K-S\) testi uygulanmıştır. Elde edilen tek örneklem \(K-S\) testi analizi sonucunda kontrol grubu ön-test puanlarının \((K-S (Z)=-.746; \ p>0.05)\) ve son test puanlarının \((K-S (Z)=.501; \ p>0.05)\) normal dağılım gösterdiği belirlenmiştir. Bu nedenle parametrik bir test olan ilişkili örneklemler için \(t\)-testi kullanılmasına karar verilmiştir. Kontrol grubu matematiğe karşı özyeterlik algısı ölçüleri ön-test ve son-test ortalama puanları arasındaki farkın anlamlılığı için yapılan \(t\)-testi sonuçları Tablo 4. 5 ’te verilmiştir.

Tablo 4.5.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>(\bar{x})</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol Grubu</td>
<td>Ön-test (özyeterlik algı ölçüleri)</td>
<td>22</td>
<td>3.01</td>
<td>0.372</td>
<td>21</td>
<td>0.177*</td>
<td>0.861</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Son-test (özyeterlik algı ölçüleri)</td>
<td>22</td>
<td>3.00</td>
<td>0.257</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^*p>.05\) Anlamlı düzeyde fark yoktur
Tablo 4.5.’e göre Matematik Ders Programının öngördüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin öz yeterlik alı algıları ön test ve son test puanları arasında anlamlı bir fark olmadığını görülmektedir \([t(21)=0.177; \ p>0.05]\). Kontrol grubu matematiğe karşı öz yeterlik ölçüğü son-test puan ortalamasının \((\bar{X}=3.00)\), ön-test puan ortalamasından \((\bar{X}=3.01)\) düşük olduğu görülmektedir. Farklı bir söylemle kontrol grubu, uygulama öncesi ve uygulama sonrası matematiğe karşı öz yeterlik ölçüğü puan ölçümleri açısından birbirinden farklılaşmamaktadır. Bu bulguya dayanarak; Matematik Ders Programının öngörüdüğü etkinlikler öğrencilerin matematiğe ilişkin öz yeterlik algısını artırmada etkili olmadığını söylenebilir.

4.2.3 Araştırmamanın altıncı alt problemine ilişkin bulgular

Araştırmanın altıncı alt problemi tarihisel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin öz yeterlik ölçüğü son test puanları arasında anlamlı bir fark olup olmadığını ilgilidir.

Öncelikle çalışma gruplarındaki öğrencilerin son-test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel tekninin kullanılacağını karar vermek amacı ile tek örneklem K-S testi uygulanmıştır. Elde edilen tek örneklem K-S testi analizi sonucunda deney grubundaki öğrencilerin son-test puanlarının \((K-S (Z)=.721; \ p>0.05)\) ve kontrol grubundaki öğrencilerin son test puanlarının \((K-S (Z)=.501; \ p>0.05)\) normal dağılım gösterdiği belirlenmiştir. Bu nedenle parametrik bir test olan ilişkisiz örneklemler için t-testi kullanılması karar verilmiştir. Deney ve kontrol grubu Matematiğe Karşı Öz yeterlik Algence Son-test ortala puanları arasındaki farkın anlamlılığı için yapılan t-testi sonuçları Tablo 4. 6’da verilmiştir.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>(\bar{X})</th>
<th>(S_s)</th>
<th>(S_d)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Son-test (öz yeterlik algı ölçüğü)</td>
<td>22</td>
<td>3.07</td>
<td>0.213</td>
<td>42</td>
<td>1.049*</td>
<td>0.300</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Son-test (öz yeterlik algı ölçüğü)</td>
<td>22</td>
<td>3.00</td>
<td>0.257</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p > .05 Anlamlı düzeyde fark yoktur.
Tablo 4.6’ya göre tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin özüyterlik algıları son test puanları arasında anlamlı bir fark olmadığını göstermektedir [t(42)=1.049; p > .05]. Deney grubundaki öğrencilerin matematikte karşı özüyterlik algısı testi puanları ortalaması (X =3.07), kontrol grubuna (X =3.00) göre daha yüksek olmasına rağmen aralarındaki fark anlamlı değildir. Farklı bir söylemle deney ve kontrol grubu öğrencilerinin matematikte karşı özüyterlik algısı testi puan ölçümleri açısından birbirinden farklılaşmamaktadır. Test sonuçunda hesaplanan etki büyüklüğü (d=0.3) ise bu farklı küçük düzeyde olduğunu göstermektedir. Bu bulguya dayanarak; tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilerin matematikle ilişkin öz yeterlik algısını artırmada etkili olmadığı söylenebilir.

4.3. Matematik inançlarına ilişkin bulgular

Bu bölümde; matematikçe yönelik inançlar ile ilgili üç alt problemlere ilişkin bulgulara yer verilmiştir.

4.3.1. Araştırmanın yedinci alt problemine ilişkin bulgular

Araştırmanın yedinci alt problemi tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin matematik inanç ölçeği ön test ve son test puanları arasında anlamlı bir fark olup olmadığını ile ilgilidir.

Öncelikle deney grubundaki öğrencilerin ön-test ve son test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel teknikin kullanılacağına karar vermek amacı ile tek örneklem K-S testi uygulanmıştır. Elde edilen tek örneklem K-S testi analizi sonucunda deney grubu ön-test puanlarının (K-S (Z)=.779; p>0.05) ve son test puanlarının (K-S (Z)=1.175; p>0.05) normal dağılım gösterdiğini belirlemiştir. Bu nedenle parametrik bir test olan ilişkili örneklemler için t-testi kullanılmamasına karar verilmiştir. Deney grubu matematik inanç ölçeği ön-test ve son-test ortalaması puanları arasındaki farkın anlamlılığının için yapılan t-testi sonuçları Tablo 4. 7 ’de verilmiştir.
Tablo 4.7.

Deney Grubu Matematik İnanç Ölçeği Ön-test ve Son-test Puanlarına Ait t-testi Sonuçları

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>\bar{X}</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Ön-test (inanç ölçeği)</td>
<td>22</td>
<td>4.19</td>
<td>.363</td>
<td>21</td>
<td>-3.898*</td>
<td>0.001*</td>
</tr>
<tr>
<td>Deney grubu</td>
<td>Son-test (inanç ölçeği)</td>
<td>22</td>
<td>4.53</td>
<td>.149</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<.05 Anlamlı düzeyde fark vardır

Tablo 4.7 tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin matematik inanç ölçeği ön test ve son test puanları arasında anlamlı bir fark olduğunu göstermektedir [t(21)=−3.898; p<.05]. Deney grubu matematik inanç ölçeği son-test puan ortalamasının (\bar{X}=4.53), ön-test puan ortalamasından (\bar{X}=4.19), yüksek olduğu görülmektedir. Bu bulguya dayanarak; tarihsel bağlamlarla desteklenen matematik öğretiminin deney grubundaki öğrencilerin matematik ile ilişkin inançlarını olumlu yönde etkilediği söylenebilir.

4.3.2. Araştırmanın sekizinci alt problemine ait bulgular

Araştırmanın sekizinci alt problemi Matematik Ders Programının öngördüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçeği ön test ve son test puanları arasında fark olup olmadığını ile ilgili.

Öncelikle kontrol grubundaki öğrencilerin inanç ölçeği ön- test ve son- test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel tekniğin kullanılacağını karar vermek amacı ile tek örneklem K-S testi uygulanmıştır. Elde edilen tek örneklem K-S testi analizi sonucunda kontrol grubu ön test puanlarının (K-S (Z)=.739; $p>0.05$) ve son test puanlarının (K-S (Z)=.672; $p>0.05$) normal dağılım gösterdiği belirlenmiştir. Bu nedenle parametrik bir test olan ilişkili örneklemler için t-testi kullanılmamasına karar verilmiştir. Kontrol grubu matematik inanç ölçeği ön-test ve son-test ortalama puanları arasındaki farkın anlamlılığı için yapılan t-testi sonuçları Tablo 4.8’de verilmiştir.
Tablo 4. 8' e göre Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçeği ön test ve son test puanları arasında anlamlı bir farkı olup olmadığı söylenebilir [t(21)=1.670; p>0.05]. Kontrol grubu inanç ölçeği son- test puan ortalamasının (\(\bar{X} = 4.04 \)), ön-test puan ortalamasından (\(\bar{X} = 4.09 \)) düşük olduğu görülmüştür. Farklı bir söyleme kontrol grubu uygulama öncesi ve uygulama sonrası matematik inanç ölçeği testi puan ölçümleri açısından birbirinden farklılaşmamaktadır. Bu bulguya dayanarak; matematik ders programının öngörüdüğü etkinlikler öğrencilerin matematiğe ilişkin inançları üzerinde olumlu bir etkiye sahip olmadığı söylenebilir.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test (inanç ölçeği)</th>
<th>N</th>
<th>(\bar{X})</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol Grubu</td>
<td>Ön-test</td>
<td>22</td>
<td>4.09</td>
<td>0.234</td>
<td>21</td>
<td>*1.670</td>
<td>0.110</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Son-test</td>
<td>22</td>
<td>4.04</td>
<td>0.198</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p > .05 Anlamlı düzeyde fark yoktur

4.3.3. Araştırmanın dokuzuncu alt problemine ilişkin bulgular

Araştırmanın dokuzuncu alt problemi *tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı* deney grubundaki öğrenciler ile Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçeği son test puanları arasında anlamlı bir fark olup olmadığı ile ilgilidir.

Öncelikle çalışma grubundaki öğrencilerin son-test puanları arasında anlamlı bir farkın olup olmadığını belirlemek için hangi istatistiksel teknünün kullanılacağına karar vermek amacı ile tek örneklem K-S testi uygulanmıştır. Elde edilen tek örneklem K-S testi analizi sonucunda deney grubu son-test puanlarının (K-S (Z)=1.175; p>0.05 ve kontrol grubu son test puanlarının (K-S (Z)=.672; p>0.05) normal dağılım gösterdiğini belirlemiştir. Bu nedenle parametrik bir test olan ilişkisiz örneklemler için t-testi kullanılmasına karar verilmistir. Deney ve Kontrol grubu matematik inanç ölçeği son-test ortalama puanları arasındaki farkın anlamlılığı için yapılan t-testi sonuçları Tablo 4.9'da verilmiştir.
Tablo 4. 9.
Deney ve Kontrol Grubu Matematik İnanç Ölçeği Son-test Puanları Arası İlişkisiz Örneklemler t-Testi Sonuçları

<table>
<thead>
<tr>
<th>Grup</th>
<th>Test</th>
<th>N</th>
<th>X</th>
<th>Ss</th>
<th>Sd</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deney Grubu</td>
<td>Son-test (matematik inanç ölçeği)</td>
<td>22</td>
<td>4.53</td>
<td>0.149</td>
<td>42</td>
<td>9.170*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Kontrol Grubu</td>
<td>Son-test (matematik inanç ölçeği)</td>
<td>22</td>
<td>4.04</td>
<td>0.198</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<.05 Anlamlı düzeyde fark vardır

Tablo 4. 9 tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrenciler ile matematik ders programının öngördüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçeği son test puanları arasında anlamlı bir farklılık olduğunu göstermektedir [t(42)=9.170, p<.05]. Deney grubundaki öğrencilerin matematik inanç ölçeğinden elde edilen puan ortalaması (X =4.53), kontrol grubuna (X =4.04) göre daha yüksektir. Bu bulgu, tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilere matematik inançları üzerinde anlamlı bir etkisi olduğunu göstermektedir. Test sonucu hesaplanan etki büyüklüğü (d=2.8) ise bu farkın yüksek düzeyde olduğunu göstermektedir. Bu bulguya dayanarak, tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilere matematik inançlarını olumlu yönde etkilediği söylenebilir.
BEŞİNCİ BÖLÜM: TARTIŞMA, SONUÇ VE ÖNERİLER

5.1. Tartışma

Araştırmanın diğer üç alt problemi, tarihsel bağlamlarla desteklenen matematik öğretiminin matematiğe ilişkin inançlara etkisi inceleyen alt problemlerdir. Bu alt problemlere cevap verebilmek amacıyla matematik inanç ölçüğü kullanılmıştır. Araştırmanın sonuçları, tarihsel bağlamlarla desteklenen matematik öğretiminin uygulandığı deney grubundaki öğrencilerin matematik inanç ölçüğini ön test ve son test puanları arasında son test puanı lehine anlamılı bir fark olduğunu, Matematik Ders Programının öngörüdüğü etkinliklerin uygulandığı kontrol grubundaki öğrencilerin matematik inanç ölçüğini ön test ve son test puanları arasında anlamılı bir farklılık olduğunu ve deney grubundaki öğrenciler ile kontrol grubundaki öğrencilerin matematik inanç ölçüğini son test puanları arasında deney grubu lehine anlamılı bir farklılık olduğunu göstermektedir.

İnançlar ve deneyimler arasındaki ilişki düşünülündüğünde deneyimlerin inançları etkilediği yapılan çalışmalarla desteklenmektedir (Toluk, Uçar ve diğ., 2010). Bu çalışmada tarihsel bağlamlarla desteklenmiş matematik deneyimleri, matematiğe yönelik inançları olumlu yönde etkilemiş olabilir. Ayrıca öğrencilerin matematiksel problemleri farklı yöntemlerle çözülebildiğini görmeleri, öğrencilerin matematiksel düşünmede tek bir
çözüm yolunun olmadığı inancına sahip olmalarını sağlamış olabilir. Bununla birlikte öğrencilerin matematikçilerin astronomiyle mimariyle yakından ilgilenmeleri, matematığın yaşam için gerekli bir disiplinerlerarasi bir yaklaşım olduğunu görmelerine, bu durumda öğrencilerin inançları üzerinde olumlu etkiye uğramadığı inancına sahip olmalarını sağlamış olabilir.

5.2.Öneriler

Bu araştırmada; tarihsel bağlamlarla desteklenen matematik öğretiminin beşinci sınıf öğrencilerinin matematik başarısına, özvetilik algısına ve matematığe ilişkin inançlarına etkisi incelenmiştir. Elde edilen sonuçlara göre öneriler, uygulamaya yönelik öneriler ve gelecek araştırmalara yönelik öneriler olmak üzere iki başlık altında sunulmuştur.

5.2.1. Uygulamaya yönelik öneriler

- Araştırma, tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilere matematik başarısına, özvetilik algısına ve matematığe ilişkin inançlarına etkisi incelenmiştir. Elde edilen sonuçlara göre öneriler, uygulamaya yönelik öneriler ve gelecek araştırmalara yönelik öneriler olmak üzere iki başlık altında sunulmuştur.
kitaplarında yer alabilir ve matematik tarihinden daha farklı uygurlıklara ait yöntemler seçilabilir.

- Uygulamada yaşanmış olan güçlüklerden biri, küçük yaş gruplarına yönelik matematik tarihi ile ilgili kaynakların sınırlılığıdır. Bu nedenle küçük yaş grupları için matematik tarihi ile ilgili kaynakların artırılması sağlanabilir.

- Ayrıca öğretmenlere yönelik matematik tarihinin matematik derslerinde etkin kullanımlarıyla ilgili hizmet içi eğitim seminerleri düzenlenebilir.

5.2.2. Gelecek araştırmalara yönelik öneriler

- Bu araştırmmanın çalışma grubunu beşinci sınıf öğrencileri oluşturmaktadır. Yapılacak çalışmalarda tarihsel bağlamlarla desteklenen matematik öğretiminin farklı öğrenci düzeyleri (6.sınıf, 7. sınıf ve 8. sınıf) üzerinde etkisi incelenebilir.

- Bu araştırmada sayılar öğrenme alanı seçilmiştir. Yapılacak çalışmalarla tarihsel bağlamlarla desteklenen matematik öğretiminin farklı öğrenme alanlarında uygulanabilirliği incelenebilir.

- Bu araştırmada yarı deneysel desen kullanılmıştır. Tarihsel bağlamlarla desteklenen matematik öğretiminin etkisi ile ilgili daha derinlemesine bilgi elde etmek için nitel ve karma araştırma desenlerinin kullanıldığı çalışmalar yapılabilir.

- Bu araştırmada tarihsel bağlamlarla desteklenen matematik öğretiminin öğrencilerin matematiğe ilişkin öz yeterlilik algısını artırmada etkili olmadığı söylenebilir. Bu nedenle tarihsel bağlamlarla desteklenen matematik öğretiminin öz yeterlik kaynakları (kısımların, dolaylı yaklaşım, sözel kan, fizyolojik ve duyuşsal durumları) açısından incelendiği araştırmalar yürütülebilir.

- Bu araştırmada veriler 6 hafta (30 saat) boyunca toplanmıştır. Boylamsal araştırmalar yapılarak tarihsel bağlamlarla desteklenen matematik öğretiminin öz yeterlilik, tutum, motivasyon ve kalıcılığa olan etkisi incelenebilir.
KAYNAKÇA

EKLER
(EK-1) BELİRTKE TABLOSU

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok dokuz basamaklı doğal sayıları okur ve yazar.</td>
</tr>
<tr>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td>En çok bir basamaklı doğal sayıları okur ve yazar.</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Bilişsel düzey</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
<td>Uygulama</td>
</tr>
<tr>
<td>MADDE NO</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>P<sub>1</sub></td>
<td>.76</td>
<td>.81</td>
<td>.77</td>
<td>.70</td>
<td>.69</td>
<td>.55</td>
<td>.57</td>
<td>.60</td>
<td>.63</td>
<td>.81</td>
<td>.59</td>
</tr>
<tr>
<td>R<sub>1</sub></td>
<td>.63</td>
<td>.69</td>
<td>.56</td>
<td>.65</td>
<td>.64</td>
<td>.74</td>
<td>.73</td>
<td>.69</td>
<td>.56</td>
<td>.59</td>
<td>.64</td>
</tr>
</tbody>
</table>
(Ek-2) MADDE ANALİZLERİ

<table>
<thead>
<tr>
<th>Madde No</th>
<th>Madde Güçlük İndeksi (P<sub>jx</sub>)</th>
<th>Madde Ayırt Edicilik İndeksi (R<sub>jx</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.66</td>
<td>.40</td>
</tr>
<tr>
<td>2</td>
<td>.86</td>
<td>.42</td>
</tr>
<tr>
<td>3</td>
<td>.76</td>
<td>.24</td>
</tr>
<tr>
<td>4</td>
<td>.69</td>
<td>.44</td>
</tr>
<tr>
<td>5</td>
<td>.80</td>
<td>.32</td>
</tr>
<tr>
<td>6</td>
<td>.76</td>
<td>.63</td>
</tr>
<tr>
<td>7</td>
<td>.81</td>
<td>.69</td>
</tr>
<tr>
<td>8</td>
<td>.47</td>
<td>.29</td>
</tr>
<tr>
<td>9</td>
<td>.24</td>
<td>-.34</td>
</tr>
<tr>
<td>10*</td>
<td>.81</td>
<td>.62</td>
</tr>
<tr>
<td>11</td>
<td>.72</td>
<td>.46</td>
</tr>
<tr>
<td>12*</td>
<td>.77</td>
<td>.56</td>
</tr>
<tr>
<td>13*</td>
<td>.68</td>
<td>.69</td>
</tr>
<tr>
<td>14*</td>
<td>.70</td>
<td>.65</td>
</tr>
<tr>
<td>15*</td>
<td>.85</td>
<td>.76</td>
</tr>
<tr>
<td>16</td>
<td>.57</td>
<td>.49</td>
</tr>
<tr>
<td>17*</td>
<td>.84</td>
<td>.81</td>
</tr>
<tr>
<td>18</td>
<td>.70</td>
<td>.48</td>
</tr>
<tr>
<td>19*</td>
<td>.75</td>
<td>.66</td>
</tr>
<tr>
<td>20*</td>
<td>.44</td>
<td>.54</td>
</tr>
<tr>
<td>21*</td>
<td>.69</td>
<td>.64</td>
</tr>
<tr>
<td>22</td>
<td>.56</td>
<td>.47</td>
</tr>
<tr>
<td>23*</td>
<td>.61</td>
<td>.74</td>
</tr>
<tr>
<td>24*</td>
<td>.86</td>
<td>.73</td>
</tr>
<tr>
<td>25*</td>
<td>.57</td>
<td>.73</td>
</tr>
<tr>
<td>26*</td>
<td>.56</td>
<td>.73</td>
</tr>
<tr>
<td>27*</td>
<td>.68</td>
<td>.80</td>
</tr>
<tr>
<td>28*</td>
<td>.61</td>
<td>.70</td>
</tr>
<tr>
<td>29*</td>
<td>.70</td>
<td>.79</td>
</tr>
<tr>
<td>30</td>
<td>.57</td>
<td>.70</td>
</tr>
<tr>
<td>31</td>
<td>.21</td>
<td>.15</td>
</tr>
<tr>
<td>32</td>
<td>.59</td>
<td>.58</td>
</tr>
<tr>
<td>33</td>
<td>.49</td>
<td>.55</td>
</tr>
<tr>
<td>34</td>
<td>.59</td>
<td>.64</td>
</tr>
<tr>
<td>35*</td>
<td>.55</td>
<td>.74</td>
</tr>
<tr>
<td>36</td>
<td>.60</td>
<td>.69</td>
</tr>
<tr>
<td>37</td>
<td>.36</td>
<td>.07</td>
</tr>
<tr>
<td>38*</td>
<td>.81</td>
<td>.74</td>
</tr>
<tr>
<td>39</td>
<td>.63</td>
<td>.56</td>
</tr>
<tr>
<td>40</td>
<td>.81</td>
<td>.59</td>
</tr>
</tbody>
</table>

Not: Sağ üst köşesinde * işareti olan maddeler başarı testi kapsamına alınan maddelerdir.
Sevgili öğrenciler,

Uygulanacak olan testin amacı, sizlerin sayılar öğrenme alanı ile ilgili başarı düzeyinizi ortaya çıkarmaktır. Toplam 20 sorudan oluşan testte her sorunun yalnız bir doğru cevabı vardır. Sınav süresi 40 dakikadır.

Başarılar dilerim...

1) 0, 3, 6, 9, 12, .., .., .. sayının örtünüsüne bir terimi aşağıdakilerden hangisi olamaz?
 A) 17 B) 21 C) 42 D) 51

2) \(341 \div 15\) Bölme işleminde bölüm A kalan B olduğuna göre
 \((A \div B) + (A \times B)\) işleminin sonucu kaçtır?
 A) 244 B) 264 C) 341 D) 224

3) Bir çarpma işleminde çarpım 8888 ve çarpanlardan biri 88 ise diğer çarpan kaçtır?
 A) 11 B) 88 C) 101 D) 1001

4) Şule, Ece, Ceren ve Elvin'in doğal sayılarla hazırlamış olduğu bilgi kartları aşağıda gösterilmiştir. Aşağıdakilerden hangisi yanlıştır?
 A) Şule B) Ece C) Ceren D) Elvin

5) Aşağıdaki işlemlerden hangisinde parantez ilk iki sayıyı değil de son iki sayıyı içine alırsa işlemin sonucu değişmez?
 A) \((22 \div 11) \times 2\) B) \((25 \times 4) + 25\) C) \((40 \div 20) + 2\) D) \((10 \times 8) + 2\)

6) 3457889 sayısının 7 sayının basamak değeri sayı değerinden kaç fazladır?
 A) 6993 B) 5993 C) 7000 D) 6903
7) \((32 \div 4) \times 912\) işleminin sonucu aşağıdakilerden hangisidir?

A) 7288 B) 7291 C) 8208

8) Şirinleri kötü kalpli büyücü Gargamelin elinden kurtarmak isteyen şirin baba öncelikle Gargamelin kapısının şifresini çözmesi gerekir. Aşağıdaki sonuçların toplanarak kapının şifresi bulunacaktır. Acaba şifre aşağıdakilerden hangisidir?

\[
\begin{array}{c}
280 \div 10 \\
345 \times 2 \\
\end{array}
\]

A) 718 B) 720 C) 740 D) 780

9) Bir hikaye kitabının son iki sayfasının sayfa numaraları toplamı 347 olduğuna göre bu hikaye kitabı kaç sayfadır?

A) 163 B) 164 C) 173 D) 174

10) \(K - L = 385\) \(K - M = 155\) Olduğuna göre aşağıdakilerden hangisi yanlıştır?

A) K en büyük sayıdır B) L en küçük sayıdır C) M en küçük sayıdır D) M - L = 230'dur

11) 27'den başlayarak her adında; bir önceki sayının 3 katından 4 fazlası şeklinde ilerleyen örtüntüde üçüncü adımdaki sayı kaç olur?

A) 243 B) 247 C) 259 D) 269

12) 160, 80, A, 20, B, 5 Sayı örtüntüsünde A ve B yerine gelebilecek sayılardan toplamı aşağıdakilerden hangisidir?

A) 20 B) 30 C) 40 D) 50

13) Şekilde Başlangıç karesine iki tane elma konulmuştur. Oklar yönünde ilerleyerek her kareye bir önceki kareye konulan elmanın iki katı kadar elma konulursa toplam üç karedeki elma miktarını bulunuz.
14) \(P=5^3, \ S=4^2 \). \(P \) ve \(S \) birer doğal sayıdır. \(P-S \) işlemini bulunuz.
 A) 7 B) 31 C) 45 D) 109

15) Bir kutunun içinde en fazla 36 tane boya kalem vardır. 6132 tane boya kalem için en az kaç kutuya ihtiyacımız vardır?
 A) 170 B) 171 C) 172 D) 173

16) \((48 \times 25) \div \frac{1}{12} \) olarak ifade edilen sayı için aşağıdakilerden hangisi yazılmalıdır?
 A) 10 B) 100 C) 12 D) 120

17) \(8 \times (47-21) \) işleminin sonucu kaçtır?
 A) 148 B) 168 C) 178 D) 208

18) Bir çekirge bir taşın üzerinden başlayarak 10 kez ileri 15 kez geri olacak şekilde zıplamaktadır. Buna göre çekirge 100 kez zıpladığında başlangıçtaki taşa göre nerede olur?
 A) 20 zıplayış ileri B) 20 zıplayış geri C) 22 zıplayış ileri D) 22 zıplayış geri

19) \(6248485 \) sayısının okunuşu aşağıdakilerden hangisidir?
 A) Altı yüz yirmi dört bin dört yüz seksen beş B) Altı milyon iki yüz kırk sekiz bin dört yüz seksen beş C) Altmış iki milyon dört yüz seksen dört bin seksen beş D) Altmış iki milyon kırk sekiz bin dört yüz seksen beş

20) \(M=(8 \times 20)-13, \ S=(282 \div 3)+53 \)
 Yukarıda verilen işlemlere göre \(M \) ve \(S \) sayları için aşağıdakilerden hangisi söylenebilir?
 A) \(M \), \(S \)'den küçüktür.
 B) \(M \) ve \(S \) birbirine eşittir.
 C) \(M \), \(S \)'nin iki katıdır.
 D) \(S \), \(M \)'den küçüktür.
(EK-4) MATEMATİĞE İLİŞKİN ÖZYETERLİK ALGI ÖLÇEĞİ

Sevgili Öğrenciler,

Katkılarınız için çok teşekkür ediyorum.

D. Aysen GÖRÜR

Eğitim Programları ve Öğretimi Anabilim Dalı
Pamukkale Üniversitesi

<table>
<thead>
<tr>
<th>İFADELER</th>
<th>Hiçbir zaman</th>
<th>Ender olarak</th>
<th>Bazen</th>
<th>Çoğu zaman</th>
<th>Her zaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matematiği günlük yaşamında etkin olarak kullanabileceğimi düşünüyorum. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Günlümü/zamanımı planlarken matematiksel düşününürüm. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Matematiğin benim için uygun bir uğraş olmadığını düşünüyorum. (-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Matematikte problem çözme konusunda kendimi yetenli hissediyorum. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Yeterince uğraşarsam her türlü matematik problemini çözebilirim. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Problem çözken yanlış adımlar atıyorum duygusu taşırım. (-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Problem çözken beklenmedik bir durumla karşılaştırıldığında telaş kapılırım. (-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Matematiksel yapılar ve teoremler içinde dolaşıp yeni, küçük keşifler yapabilirim. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Matematikte yeni bir durumla karşılaştırıldığında nasıl davranmanız gerektiğini bilirim. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Matematikle ilgili sorunlarında çevremdekilere kolaylıkla yardım edebilirim. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Yaşam içindeki her türlü probleme matematiksel yaklaşımla çözüm önerileri getirebiliyorum. (+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(EK 5) ÖZYETERLİLİK ALGI ÖLÇEĞİ İZNİ

03.06.2015
Gmail - “Matematığe Karşı Özyeterlik Algısı Ölçeği” Ölçek İzin İsteği

aysen celik <aysencelik20@gmail.com>

"Matematığe Karşı Özyeterlik Algısı Ölçeği" Ölçek İzin İsteği

Aysun Umay <aysunumay@gmail.com>
Alici: aysen celik <aysencelik20@gmail.com>

Sevgili Görür,

Eski bir öğrencimizin başarıyla eğitime devam etmesi beni çok sevindirdi. Geliştirmiş olduğum "Matematığe Karşı Özyeterlik Algısı Ölçeği" ni tezinizde kullanmanızdan onur duyarım.

Başarılarnınızın devamını dilerim.

Prof. Dr. Aysun UMAY

14 Eylül 2013 22:45 tarihinde aysen celik <aysencelik20@gmail.com> yazdı:

Merhaba Sayın Hocam,

Cevabınız için şimdiden çok teşekkür ederim, iyi çalışmalar.

D. Aysen GÖÜRÜR
Sevgili Öğrenciler,

Bu ölçek, matematik dersine ilişkin inançlarınızı incelemek amacıyla hazırlanmıştır. Ölçekte matematiğe yönelik inanç ifadelerine yer verilmiştir. Sizden beklenen, ölçekte verilen inanç ifadelerinin size uygunluğunu düşünüp karar vermenizdir. Verdiğiniz cevaplar bireysel olarak değil tüm katılımcılarla bir bütün olarak değerlendirilecektir ve bir başkasıyla paylaşılacaktır. İnanç ifadelerinde kendini en yakın hissettiginiz kutucuğa çarpı (X) işaretini koyunuz.

Katkılarınız için çok teşekkür ediyorum.

D. Aysen GÖRÜR

Eğitim Programları ve Öğretimi Anabilim Dalı
Pamukkale Üniversitesi

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matematik dersinde öğrenciler konuyla ilgili tartışarak matematiksel doğrulara ulaşırlar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sinifça matematikle uğraşırken öğretmeniniz bize rehberlik eder.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Matematikte başarılı bir öğrenci olmak için çalışırım.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Matematik dersinde öğrenci konuyu anlamamışsa sorumlu öğretmen olmam.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Matematik düşünmeye geliştirim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Matematik dersinde cevabin yeterli olması için herkes tarafından anlaşılacak şekilde açıklanması gerekir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Matematik dersinde sonuç veren çözüm yolları bulmak sonuca ulaşmak kadar önemlidir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Matematik insanların düşüncelerine tutarlılık getirir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Matematik teknolojisinin gelişmesine katkida.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Text</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Matematik dersinde yaptığım ödevler beni geliştirir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Matematik kendine ait sembolleri ve dili olan bir alandır.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Bazen öğretmenin verdiği ödev ve çalışmalardan daha fazlasını yaparım.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Öyle ya da böyle, insanlara mutlaka matematik gerekliidir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Matematikte diğer derslerde olduğu kadar başarılı olamam.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Matematik problemlerini uğraşırsam çözebilirim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Matematikte zorlandığında çalışarak üstesinden gelebilirim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Sınıfça matematikle uğraşırken öğretmeniniz sınıfın başvurduğu kişidir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Konuyu öğrenmek için matematik dersini dikkatle dinlerim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Matematik ortak bir düşünme dilidir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Matematik verdiği emeğe değer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Matematik düzenli ve belirli kurallar çerçevesinde düşünmeyi öğretir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
İzem ve İzgi 5. sınıfa giden iki kardeştir. Bir gün eve elinde eski bir kitapla gelen babası, kimseyle konuşmadan odasına girer, İzem ve İzgi ise babalarının peşinden giderler, babası ise kitabı kızlarından gizleyerek bir dolabay içine koyar. İzem ve İzgi’nin merakları iyice artmıştır. Babalarına kitabin içeriği ile ilgili sorular sorularak babalarının üzerinde durmayarak onları geçiştirmesi İzem ve İzgi’nin aklında birçok soru işaretine neden olmuştur. Yatmadan önce eski kitap düşünceler içinde sırılsık şeylerin olduğunu düşünmeyen babaların yanına gelen İzem ve İzgi, babalarının sakladığı kitap İzem ve İzgi’yi heyecanlandırmaktadır. Yavaşça kitabın sayfalarını çevirmeye başlarlar, kitapta daha önce görmemişlerdir. Kemik üzerindeki çizgiler, çeşitli nesneler, mezar taşıları, tabletler ve anlayamadıkları birçok şekiller, izaret vardır. İzem İzgi’ye tüm bunların matematikte ilgisi olduğunu söyledi. İzgi biraz düşündükten sonra babalarına sormanın daha doğru olacağını söyler.

Sizce bu şekillerin matematikle ilgisi olabilir mi?
Akıllarında birçok soru işareti bulunan İzem ve İzgi bu yaptıklarını babalarına nasıl söyleyeceklerini düşünmeye başlarlar. Çünkü kendilerinin girmesine izin verilmeyen bir odaya girmiş ve babalarının kitabını gizlice karıştırmışlardır. Anne ve babasından özür dileyen iki kardeş yaptıklarını anlatırlar. Kızlarının pişman ve üzgün hallerini gören babaları onları affeder ve kitapla ilgili çocukların merakını giderir. Kitabın çok değerli olduğunu, günümüz matematiğinin geçmişte nasıl ortaya çıktığını konu alan daha çok sayılarla ilgili ilk kitap olduğunu anlatır. İzem ve İzgi’nin merakları ise giderek artar. Bu ilgi karşısında İzemle İzgi’nin annesi ve babası Mısır gezisi düzenlemeye karar verirler. İki kardeş buna çok sevinir. İzemle İzgi’nin matematik tarihine ilişkin serüveni böylelikle başlanmıştır.

Mısır’a yolculuk süresince iki kardeş sayılar ile ilgili düşünürler. İzgi İzem’e insanlar neden saymışlar ve saymaya devam ettiğini sormaktadır. Sizce insanlar neden saymışlar ve saymaya devam ediyorlar?

Sayma işlemi nasıl ortaya çıkmış olabilir?

İki kardeşin tartışmalarına katılan babaları onlara sayılarnın ve saymanın tarihi ile ilgili bilgi vermiştir. Matematik tarihinin en eski yöntemlerinden biri olarak bilinen kemik yönteminde, kemik sahibi ne kadar hayvan öldürürse kemiğin üzerine o kadar kertik atarmış. Bu kemik hayvan türlerine göre değişebiliyormuş. İnsanlık tarihi boyunca sayılara hep ihtiyaç duyulmuştur. Babalarının anlattıklarını İzem ve İzgi’nin ilgisini çekmiştir. Artık yolculuk sona
ermiş Mısır’a gelmiştir. Mısır'a vardıklarında onları babasının arkadaşları karşılar ve onlara aynı zamanda rehberlik eder. İlk gezilecek yer olarak mısır piramitleri belirlenir.

İzem İzgi’ye sayıları biliyoruz ama bu işaretler ne demek acaba diye sorar. Her sayının yanında veya altında bir işaret vardır. İzgi ise önce bir anlam veremezler Kapının şifresini bulmak için bu sayı sisteminde öğrenmeleri gerektiğini anlarlar. Fakat öncelikle işlemlerimiz günümüz sayı sistemine iyi bir şekilde yapmamız gerekmektedir. Çok zaman kaybetmeden işlemlerimizi yapmaya koyulurlar. Önce ilk soruyu okurlar.

Mısırda insanlar önceleri avlarını saymak için kemik çubuğu kullanırlarımış. Avladıkları her hayvan için kemiklerin üzerine bir kertik atarlarımış. Ama bu kemikler her hayvan türü için farklı olabiliyormuş. Örneğin ayılar için farklı, bizonlar için farklı, kurtlar için farklı kemikler.

Aşağıda ise üç farklı türde kemik üzerine kertikler ve üç farklı avcı vardır. Bu avcıların hayatları boyunca avladıkları hayvan sayıları verilmiştir. Acaba hangi...
avcıın daha korkunç bir avcı olduğunu bulmamız gerek bizlere yardımcı olur musunuz?

Birinci avcı için; ayıya ait kemiğin üzerinde 50243, bizon kemiğinde 2450, kurt kemiğinde ise 3220 kertik.

İkinci avcı için; ayıya ait kemiğin üzerinde 28984, bizon kemiğinde 3038, kurt kemiğinde ise 165 kertik.

Üçüncü avcı için; ayıya ait kemiğin üzerinde 12345, bizon kemiğinde 348, kurt kemiğinde ise 660 kertik.

Acaba birinci avcı ikinci avcido ne kadar fazla hayvan avlamış olabilir?

İkinci avcı üçüncü avcido ne kadar hayvan fazla hayvan avlamış olabilir?

En az hayvan avlayan hangi avcıdır?

Problemimizi anlayalım ve yanıtalım

- Problemimizin verileri nelerdir?
- Problemimizin bilinmeyenleri nelerdir?
- Problemimizi şekilsel olarak gösterebilir miyiz?
Çözüm planımızı tasarlayalım ve uygulayalım

Çözümü test edelim

Sonuçları doğru bir şekilde bulan İzem ve İzgi için birinci kapı geçmek için son bir aşama kalmıştır sonuçları mısır sayı sisteminde yazmak. Aslında yazım şekliyle ilgili iki örnek verilmiştir. Bu örnekleri inceleyerek sonuçları mısır sayı sisteminin inceliklerini öğrenebileceklerdir. İki kardeş yardımcı olabilir miyiz?

Örnek: \[\begin{array}{c}
\text{I} \\
\text{II} \\
\end{array}\] = 3462

\[\begin{array}{c}
\text{I} \\
\text{II} \\
\text{III} \\
\text{IV} \\
\end{array}\] = 365
Acaba sayıları yazarken tek çizgiler hangi sayıya kadar kullanılmış?

Bizim sayı sistemimizle olan benzerlikleri ve farklılıkları neler olabilir?

Problemimizi anlayalım ve yansıtalım

- Problemimizin verileri nelerdir?
- Problemimizin bilinmeyenleri nelerdir?
- Problemimizi şekilsel olarak gösterebilir miyiz?

Çözüm planımızı tasarlayalım ve uygulayalım

- Verilenler ve bilinmeyenler arasında bağlantılı kurabiliyor muyuz?
- Çözüm planımızı uygulayalım.
Çözümü test edelim

• Sonuçları kontrol edebilir miyiz?

Siz de benzer şekilde bir problem kurup probleminizi çözebilir misiniz?
(EK 8) DENEYSEL İŞLEMLERE İLİŞKİN ÖĞRENCİ FOTOĞRAFLARI
Acaba firavunun eline kaç kg buğday kalır? \(\frac{850}{9} \) buğday kalır.

Firavununu nasıl değerlendirebilir? Tartışalım ve sonuçları misir sayı sisteminde yazalım.

Probleminizi anlayalım ve yansıtalırm

Probleminizin verileri: Firavunun 9 ambar dolusu buğdayın her bini- nin içinde 850 kg buğday alması ve 24 aileye dağıtılmak istenmesi.

Probleminizin bilinmeyenleri: 24 aileye ne kadar buğday düşeceğii.

Probleminizin şekli:

\[\text{24 aile ve } 7650 \text{ kg buğday}\]

Çözüm planınızı tasarlayalım ve uygulayalım

Verileri çarpıp, bölecek bağılari kurabiliriz.

\[\text{Çözüm: } 850 \times 9 = \frac{7650}{24} = 319 \frac{3}{8}\]

\[6 \text{ aileye } 1 \text{ t} \text{ i} \text{ r} \text{ k} \text{ g} \text{ v} \text{ e} \text{ r} \text{ e} \text{ b} \text{ i} \text{ l} \text{ i} \text{ r} \]

Çözümü test edelim

\[\frac{364}{24} = \frac{764}{1650} \Rightarrow \text{ doğru olmalıdır}\]

\[\text{Sonuçları kontrol edebilir mi?}\]
Çözümü test edelim

\[
\begin{array}{c}
106 \\
\times \quad 8
\end{array}
\Rightarrow \text{Soyıların toplamı}
\]

Siz de kipu yönteminin kullanarak bir problem çözebilir misiniz?

Bir Mısır pratiğinin içinde 5'ci tane insan vardır. Bir bölgede 65 tane pratiğin vardır, 8'inci pratiğe kadar insan vardır?

Sonra kipu yöntemiyle bu sonuç gösterebiliyor musunuz?

Çözüm:

\[
\begin{array}{c}
65 \\
\times \quad 5
\end{array}
\]

\[325\] tane toplam insan vardır.
Beşinci kapı ise öruntü kapısıdır.

Acaba bu şekiller bir düzen içinde midir?
Bu şekillere ait bir kural bulabilir miyiz?
27. adımdaki şekil belirleyebilir miyiz? Tartışalım.

Problemimizi anlayalım ve yanıtlayalım

Problemimizin verileri: Hırsızlar anan kursunun dönen sekilli ve lotus çiçeği di sekil sonuca öruntü kendi ni teker teki.

Problemimizin bilinmemeleri: Bu şekilleri cut kursun ve 27. adımdaki şekillerin bulunması.

Problemimizin şekil:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:

Problemimizin şekli:
Siz de kendi özgün probleminizi kurup çözünüz.
Bu üç sayıın toplanıp 10'a bölünmesi bir misirliya verilen buğdayın kilosunu vermektedir. O zaman buğday kaç kg'dir?

Çözüm:

\[
\begin{align*}
2680 + 2600 + 200 & = 7280 \\
7280 & \div 10 = 728 \\
7280 - 728 & = 6552
\end{align*}
\]

728 kg bir misirliya verilen buğday.
Senaryomuzdaki problem durumu düşünülüğünde bir ilişki kurulabilir mi? Evet, kare küp sayısı ile bir ilişki kurulabilir.
Aşağıdaki küp sayılarının doğru olarak gösterimi kapının şifresini bize verecektir yalnız küçük bir sorun kalır sonuçları misir sayı sisteminde nasıl yazılır.

\[3 \times 3 \times 3 = 27 \text{ küp} \Rightarrow \text{III III III} \]

\[2 \times 2 \times 2 = 8 \text{ küp} \Rightarrow \text{III III} \]

İzlemle izgi şifreyi doğru girdikten sonra kapının açıldığını görürler mutluluk için diğer kapıları bulmak için yollarına devam ederler.

Siz de kendi probleminizi kendiniz kurup çözünüz.

Yandaki Küpün küp sayıları kare küp ile nasıl bulunur?
Bu sayı bize kendi kapının şifresini verecektir. Ama tabiki misir sayı sistemiyle göstermemiz gerekiyor.

Çözüm: \[5 \times 5 \times 5 = 125 \text{ küp} \]

\[\text{III III III} \]
1. Gruplara ayrıalım ve oturma düzenimizi belirleyelim (4-6 kişilik).

2. Grubumuza isim verelim ve grup içi sorumluluklarımızı belirleyelim. Ünlü matematikçileri tanımayla çalışalım.

3. Çalışma yapraklarımızdaki problem durumlarımızı okuyalım ve birbirimize anlatalım.

4. Problem durumlarını tespit edelim.
5. Problem durumlarıyla birlikte verilen problemle ilgili neyi biliyorum ve çözüme ulaşmak için neyi öğrenmek istiyorumuz bölümerni dolduralım (Problemimizin verileri nelerdir? Ve Problemimizin bilinmeyenleri nelerdir?)
6. Bir çözüm önermek için hangi kaynaklardan yararlananm ve nasıl ulaşmam gerektğini düşünelim, ulaştırmız kaynakları grup içinde paylaşalım

7. Problemimizi inceleyelim veriler ve bilinmeyenler arasında bağıntını kurabiliyor muyuz?
8. Çözüm planımızı uygulayalım

9. Sonuçları kontrol edebilir miyiz? Kendi problemimizi oluşturabilir miyiz?
(EK 11) UYGULAMA İZNI

T.C.
DENİZLİ VALİLİĞİ
İl Milli Eğitim Müdürlüğü

Sayı : 16605029/44/5725132
Konu: Anket Onayı

VALILİK MAKAMINA

Yukarıda adı geçen müracaatlar ile ilgili Lisans, Yüksek Lisans, Doktora öğrencileri ve Öğretim Görevlilerinin ilgili yazıları ekinde belirtmiş oldukları okullarda, (İkinciöre/Ortaöre/Okuluöce) konulere ile ilgili anket çalışmalarının " Araştırma, Yarışma ve Sosyal Etkinlik İzinleri" Genelgesinde belirtilen esaslar gereğince; Okul ve kurumların eğitim-öğretim faaliyetlerini aksatmayacek şekilde ve bu araştırma kapsamında elde edilen verilerin cd ortamında Müdürlüğümüzle teslim edilmesi kaydıyla 2014/2015 eğitim-öğretim yılı içerisinde uygulamaları Müdürlüğüne uygun görülmüş olup;

Olarlarına arz ederim.

Mahmut ÖGÜZ
Milli Eğitim Müdürü

Güvenli E布置 Imzesi

Erol TÜRKMEN
Vali a.
Vali Yardımcısı

PAMUKKALE ÜNİVERSİTESİ REKTÖRLÜĞÜNE

Kurumunuzda Müdürlüğümüzünden talep araştırma isteklerine ait Makam Onayı ve Müdürlüğümüzce Onay verilen anket formları ekte gönderilmiştir.

Gereğini rica ederim.

Erol TÜRKMEN
Vali a.
Vali Yardımcısı

Ek:
1-Anket Formları

Sıra No: Mah. Saltak Cad. No: 76 20100/DENİZLİ
Elektronik Ağ: http://denizli.meb.gov.tr
E-posta: strateji20@meb.gov.tr
Ayrıntılı Bilgi ışın: S.GELİŞİM VHKI
Telefon: (0 258) 265 55 54 dahili 708
Belgegeçer: (0 258) 265 01 69

Özgeçmiş Formu

<table>
<thead>
<tr>
<th>Kişisel Bilgiler</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adı</td>
<td>Düriye Aysen</td>
</tr>
<tr>
<td>Soyadı</td>
<td>Görür</td>
</tr>
<tr>
<td>Doğum yeri ve tarihi</td>
<td>Posof ve 21.10.1985</td>
</tr>
<tr>
<td>Uyruğu</td>
<td>T.C.</td>
</tr>
<tr>
<td>İletişim adresi ve e-mail adresi</td>
<td>Siteler Mah. 6211 Sok. Aydan Sitesi B Blok No:14 aysencelik20@gmail.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eğitim</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>İlköğretim</td>
<td>Isparta Milli Piyango Anadolu Lisesi</td>
</tr>
<tr>
<td>Ortaoğretim (Lisans)</td>
<td>Gönen Anadolu Öğretmen Lisesi</td>
</tr>
<tr>
<td>Yükseköğretim (Lisans)</td>
<td>Hacettepe Üniversitesi</td>
</tr>
<tr>
<td>Yükseköğretim (Yüksek Lisans)</td>
<td>Pamukkale Üniversitesi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yabancı dil</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yabancı dil adı –ÜDS – Sınavın yapıldığı 2010/Ekim</td>
<td>Alınan puan 48.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesleki Deneyim</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yıl (lar)</td>
<td>Mesleki deneyim</td>
</tr>
<tr>
<td>2009-2012</td>
<td>Dinar Atatürk Ortaokulu</td>
</tr>
<tr>
<td>2012-2013</td>
<td>Denizli Ahmet Nuri Özsoy Ortaokulu</td>
</tr>
<tr>
<td>2013-…</td>
<td>Denizli Kezban Ali Çınar İmamhatip Ortaokulu</td>
</tr>
</tbody>
</table>
Tez Kontrol Listesi

<table>
<thead>
<tr>
<th>KONTROL EDİLDİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tez düzeni tez yazım kilavuzuna uygun düzenlenmiştir</td>
</tr>
<tr>
<td>Sayfa boşlukları uygun düzenlenmiştir</td>
</tr>
<tr>
<td>Tüm metin Times New Roman yazı stili çift satır aralıklı 12 punto ile yazılmıştır</td>
</tr>
<tr>
<td>Sayfa numaraları kağıdın sağ üst köşesine yazılmıştır</td>
</tr>
<tr>
<td>Metin içindeki başlıklar APA sitiline uygun düzenlenmiştir</td>
</tr>
<tr>
<td>İçindekiler, tablolar ve şekiller listeleri tez yazım kilavuzuna uygun düzenlenmiştir</td>
</tr>
<tr>
<td>Tezde bulunan tüm tablolar gereklidır</td>
</tr>
<tr>
<td>Tüm tablo başlıkları tez yazım kilavuzuna uygun yazılmıştır</td>
</tr>
<tr>
<td>Tüm şekil başlıkları tez yazım kilavuzuna uygun yazılmıştır</td>
</tr>
<tr>
<td>Tüm tablo ve şekillere metindeki bölüm sırasına göre numara verilmiştir</td>
</tr>
<tr>
<td>Tablolar APA stiline uygun hazırlanmıştır</td>
</tr>
<tr>
<td>Metin içindeki tüm alıntılar uygun şekilde belirtilmiştir</td>
</tr>
<tr>
<td>Metin içerisinde verilen tüm kaynaklar, kaynakça listesinde bulunmaktadır</td>
</tr>
<tr>
<td>Kaynak gösterimleri tez yazım kilavuzuna uygun düzenlenmiştir</td>
</tr>
<tr>
<td>Kaynakça listesi APA stiline uygun düzenlenmiştir</td>
</tr>
</tbody>
</table>

DOÇ. DR. ŞÜKRAN TOK

DANİŞMANIN ADI SOYADI- İMZASI