What should be the appropriate minimal duration for patient examination and evaluation in pulmonary outpatient clinics?

Benan Musellim¹, Sermin Borekci¹, Gulfidan Uzan², Zafer Hasan Ali Sak³, Secil Kepil Ozdemir⁴, Goksel Altinisik⁵, Sinem Agca Altunbey⁶, Nazan Sen⁷, Oguz Kilinc⁸, Arzu Yorgancioglu⁹ and The Duration for Patient Examination Working Group of Turkish Thoracic Society*

Abstract:

INTRODUCTION: Patient examinations performed in a limited time period may lead to impairment in patient and physician relationship, defective and erroneous diagnosis, inappropriate prescriptions, less common use of preventive medicine practices, poor patient satisfaction, and increased violent acts against health-care staff.

OBJECTIVE: This study aimed to determine the appropriate minimal duration of patient examination in the pulmonary practice.

METHODS: A total of 49 researchers from ten different study groups of the Turkish Thoracic Society participated in the study. The researchers were asked to examine patients in an almost ideal manner, without time constraint under available conditions.

RESULTS: A total of 1680 patient examinations were reviewed. The mean duration of patient examination in ideal conditions was determined to be 20.4 ± 9.6 min. Among all steps of patient examination, the longest time was spent for “taking medical history.” The total time spent for patient examination was statistically significantly longer in the university hospitals than in the governmental hospitals and training and research hospitals (P < 0.001). Among different patient categories, the patients with a chronic disorder presenting for the first time and were referred from primary or secondary to tertiary care for further evaluation have required the longest time for patient examination.

CONCLUSION: According to our study, the appropriate minimal duration for patient examination is 20 min. It has been observed that in university hospitals and in patients with chronic pulmonary diseases, this duration has been increased to above 25 min. The durations in clinical practice should be planned accordingly.

Keywords:
Outpatient clinics, patient examination, suggested duration

The sine qua non of the art of medicine is an intimate relationship between patients and physicians. This is a key element which will be possible only on the condition that physicians allocate sufficient time for their patients. Patient examinations performed in a limited time period may lead to impaired communication between patients and physicians, deficient or erroneous diagnosis, inappropriate prescriptions, less frequent use of preventive medicine measures, reduced patient satisfaction, and acts of violence against health-care staff.[1-6] Patients usually feel unsatisfied by examinations lasting for 5 min, while feeling satisfied after examinations lasting for more than 15 min.[7,8]

In our country, the number of patients consulting a physician has been increased gradually for the past 20 years. The number of medical consultation for each person was 1.5 in 1993 and 3.2 in 2002, whereas it has increased to 8.2 in 2012.[9] As a consequence of this, the number of patients presenting for their first examination has increased, and the duration of examinations has increased...

How to cite this article: Musellim B, Borekci S, Uzan G, Ali Sak ZH, Ozdemir SK, Altinisik G, et al., What should be the appropriate minimal duration for patient examination and evaluation in pulmonary outpatient clinics?. Ann Thorac Med 2017;12:177-82.
duration for physicians they allocate for each patient has
been gradually decreased. In Turkish health system, 89% of
patients of pulmonary clinics are referring to government
hospitals. Moreover, in those hospitals, appointments are given
automatically for every 7.5 min in average. It is mostly seen
that this duration is reduced to 2 min and the physicians had
to examine over 200 patients. It is expected from physicians
to complete some procedures such as taking history, doing
physical examination, ordering other examinations or
consultations if needed, evaluating present examinations,
recording the findings to national database over internet,
prescribing e-receipts, and telling the possible side effects of
medicines and follow-up protocol to patients in this duration.

Although it might change due to the different working
conditions in different centers, no study so far aimed to
determine the appropriate minimal duration of patient
examination in pulmonary clinical practice. Hence, we aimed
to evaluate it in our daily practice.

Methods

To enroll patients diagnosed with a variety of pulmonary diseases,
ten different study groups of Turkish Thoracic Society actively
working in pulmonology (asthma and allergy, lung and pleural
malignancies, environmental and occupational pulmonary
disorders, clinical problems, chronic obstructive pulmonary disease,
respiratory system infections, diagnostic methods, tuberculosis,
tobacco control, and sleep disorders) from different levels of hospital
groups (government hospitals, training and research hospitals, and
university hospitals) were asked to name researcher physicians.
All researchers were pulmonology specialists who were actively
working. The researchers were required to enroll ten patients from
each of the patient groups divided into eight subcategories specified
in Table 1, aiming to determine the appropriate minimal duration
of patient examination for patient groups from different diagnostic
groups with different properties (acute, chronic, newly presenting
patients, and patients under follow-up) cared at institutions of
different stages (secondary care, tertiary care). The study was
performed according to the principles of the Helsinki Declaration.
The study protocol was approved by the Turkish Thoracic Society
Scientific Committee.

As part of the study design, a total of 49 researchers from ten
separate study groups of the Turkish Thoracic Society were
included in the study. Patients in the study were evaluated
without adhering to the duration that was determined by the
appointment system. The researchers were asked to examine their
patients in an almost ideal manner, without a time constraint.
The case registry forms included patients’ age, gender, and
groups [Table 1]. The researchers were asked to determine the time
required to complete each examination step provided in the form
by means of a chronometer. Examination steps were as follows:
taking medical history; physical examination; ordering tests and
informing patients about them; entering patient data into the
national database; evaluating test results; prescribing medications
or devices (through electronic media or manually); informing
and educating patients about the treatment; informing patients
about the follow-up protocol; answering patients’ additional
questions; and patients’ departure. All researchers were then
asked to send the completed registry forms through E-mail to
the study coordinator.

The study aimed to determine the total duration of
patient examination; durations for each examination step,
duration of examination of each patient group; and duration
of examination of each level of care. No information revealing
patients’ identities was included in the registry forms, and no
data were interrogated about their medical conditions.

Statistical analysis

All statistical analyses were performed with IBM SPSS 21 software
package (2029 Sterling Court Mountain View, CA 94043, USA).
The numerical variables were expressed as mean and standard
deviation. The study groups were compared using Student’s
t-test and one-sided ANOVA test with Tukey’s honest significant
difference post hoc test. Statistical significance was set at \(P < 0.05 \).

Results

Among the 49 researchers enrolled in this study, 7 (14%)
researchers were from government hospitals, 16 (33%) from
training and research hospitals, and 26 (53%) from university
hospitals. A total of 1680 patients’ data were recorded. The
study patients had a mean age of 52 ± 17 years, and 51.4%
were female.

The mean appropriate minimal duration of patient examination
determined to be 20.4 ± 9.6 min (minimum 1.9 min,
maximum 91.5 min). Duration of patient examination was
shorter than 5, 10, 15, and 20 min in 1.7, 10.1, 30.8, and 52.4%
of patients, respectively. On the other hand, it was longer
than 25, 30, 35, 40, and 60 min in 25.5, 13.4, 6.5, 3, and 0.5%
of the patients, respectively. Among all examination steps,
medical history taking step had the longest duration as
5.0 ± 3.6 min (minimum: 0.25, maximum: 36.6 min) [Table 2].

The durations of all examination steps except for physical
examination were significantly longer in the university
hospitals than the government and training and research hospitals (\(P < 0.001 \) for each) [Table 3].

There was no significant difference among gender (\(P > 0.05 \))
and also between patients over 65 and 80 years with respect
to the total duration of patient examination (\(P > 0.05 \)).
However, the duration needed for physical examination
component was significantly longer in patients older than
65 years (\(P = 0.001 \)) [Table 3].

Patient category-based analysis of the mean total duration
of patient examination revealed that “patients with records
kept at the same unit who present for routine control” where
their medical records were kept had the shortest duration
of patient examination (17.8 ± 8.6 min). On the other hand,
the patients presenting for the first time with a chronic
disorder (for at least 6 months) and referred from secondary
to tertiary care (25.9 ± 10.4 min) and the patients presenting
for the first time with a chronic disorder (for at least 6 months)
and referred from primary to tertiary care (25.9 ± 9.2 min) had
the longest durations [Table 4].

Discussion

There is no definite information as to the ideal duration
of patient examination. Although there are studies, albeit in
Table 1: Patient categories

<table>
<thead>
<tr>
<th>Patient category</th>
<th>Duration (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients presenting for the first time with acute-onset symptoms</td>
<td>5.0±3.6</td>
</tr>
<tr>
<td>Patients presenting for the first time with a chronic disorder (for at least 6 months)</td>
<td>2.8±1.3</td>
</tr>
<tr>
<td>Patients presenting for the first time with acute-onset symptoms who were referred from primary care or other provinces to secondary care for further evaluation</td>
<td>1.9±1.5</td>
</tr>
<tr>
<td>Patients presenting for the first time with acute-onset symptoms who were referred from secondary care to tertiary care for further evaluation (this group of patients will only be sampled by physicians from tertiary care centers)</td>
<td>2.5±2.0</td>
</tr>
<tr>
<td>Patients presenting for the first time with a chronic disorder (for at least 6 months) who were referred from secondary care to tertiary care for further evaluation (this group of patients will only be sampled by physicians from tertiary care centers)</td>
<td>3.5±3.1</td>
</tr>
<tr>
<td>Patients with records kept at the same unit and refer for routine control (patients who make an additional appointment to show their results will be included in this group)</td>
<td>1.5±1.0</td>
</tr>
<tr>
<td>Patients with records kept at the same unit and refer for an acute exacerbation other than routine visits</td>
<td>2.3±1.8</td>
</tr>
<tr>
<td>Informing patients about the follow-up protocol</td>
<td>1.6±1.3</td>
</tr>
<tr>
<td>Answering patients’ additional questions</td>
<td>1.6±1.4</td>
</tr>
</tbody>
</table>

Table 2: Duration of each patient examination step

<table>
<thead>
<tr>
<th>Examination step</th>
<th>Mean±SD (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taking medical history</td>
<td>5.0±3.6</td>
</tr>
<tr>
<td>Physical examination</td>
<td>2.8±1.3</td>
</tr>
<tr>
<td>Ordering tests and informing patients about them</td>
<td>1.9±1.5</td>
</tr>
<tr>
<td>Entering patient data into Medulla database</td>
<td>2.5±2.0</td>
</tr>
<tr>
<td>Evaluating test results</td>
<td>3.5±3.1</td>
</tr>
<tr>
<td>Prescribing an e-prescription</td>
<td>1.5±1.0</td>
</tr>
<tr>
<td>Informing patients about the treatment</td>
<td>2.3±1.8</td>
</tr>
<tr>
<td>Informing patients about the follow-up protocol</td>
<td>1.6±1.3</td>
</tr>
<tr>
<td>Answering patients’ additional questions</td>
<td>1.6±1.4</td>
</tr>
</tbody>
</table>

SD = Standard deviation

The frequent use of inhalers as treatment in pulmonary diseases, educating patients about the use of these medicines, and controlling their proper use may be the reasons of longer examination durations in comparison to other clinics. In addition, evaluating the thoracic computerized tomography (CT) which is being used in the diagnosis of many chronic pulmonary diseases and comparing them with previous CT examinations also lengthen the duration.

The need for a translator to cooperate with patients because of the use of spoken languages other than native language in some parts of our country is one of the reasons that lengthens the duration of patient examination in those areas. The fact that over three million Syrian immigrants were included in our health system recently and the need for translators to communicate with them should be taken into consideration as related to the subject.

Independently from the conditions in our country, today, many of the patients are consulting to the physicians with the apocryphal information they got from internet search. When the fact that the physician separates an important amount of time to correct this incorrect or missing information, it can be thought that this should be one of the main differences of our study in comparison to older studies.

Although a mean duration of patient examination of 20.4 min was determined by our study, a much longer duration was needed in a majority of patients, with 13.4% of patients having needed at least 30 min, 3% at least 40 min, and 0.5% at least 60 min. In Turkey, hospitals run by the Ministry of Health give doctor appointments for every 7.5 min. Our study found the duration of patient examination longer than 7.5 min in 95.2% of patients.

In the study that Lin et al. compared patient satisfaction with respect to duration of patient examination categorized into durations shorter than 10 min, 10–20 min, and longer than 20 min, they reported patient satisfaction levels of 57%, 63%, and 71%, respectively. This indicates better patient satisfaction with durations exceeding 20 min.\[8\]

Morrell et al. compared durations of 5, 7.5, and 10 min for consultation examinations. They reported that physician stress was significantly reduced (23%, 6%, and 2%, respectively) and patient satisfaction increased (90%, 91%, and 93%, respectively) as patient examination became longer.\[9\] Similar to the studies mentioned above, Gross et al. reported that patient satisfaction was greater after examinations lasting for longer than 15 min.\[9\]

Although there are no data about patient satisfaction in our study, these results preoccupy the positive reflection of 20 min as the appropriate minimal duration for patient examination to patient satisfaction.

In our study, taking medical history (5.0 ± 3.6 min) was the longest step of patient examination. In agreement with our results, a study by Yawn et al., which compared acute and chronic patients with/without diabetes mellitus, showed that taking medical history (>5 min) took more than 55% of the total examination time; another study reported similar results.\[10,11\]

Our results also showed that duration of 10 min or longer were needed in 10.1% of patients. Considering that taking medical history is the most important step in the art of medicine, it is clearly evident that the possibility of making an accurate diagnosis and applying correct treatment in an appointment system allocating durations as short as 2 min for the whole patient examination would be low.
Table 3: Comparison of the duration of examination steps between government, training and research and university hospitals and also comparison between patients aged ≤65 years and >65 years

<table>
<thead>
<tr>
<th>Examination step</th>
<th>Mean±SD (min)</th>
<th>P</th>
<th>Mean±SD (min)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Government Hospital</td>
<td>TRH</td>
<td>University Hospital</td>
<td>>65 years</td>
</tr>
<tr>
<td>Total duration of patient examination</td>
<td>17.9±10.31</td>
<td>17.4±6.5</td>
<td>23.3±10.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Taking medical history</td>
<td>3.8±2.4</td>
<td>4.1±2.9</td>
<td>6.1±4.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Physical examination</td>
<td>2.8±1.5</td>
<td>2.9±1.3</td>
<td>2.7±1.1</td>
<td>NS</td>
</tr>
<tr>
<td>Ordering tests and informing patients about them</td>
<td>2.1±1.5</td>
<td>1.4±1.1</td>
<td>2.2±1.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Entering patient data into Medulla database</td>
<td>2.5±2.0</td>
<td>2.0±1.2</td>
<td>2.8±2.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Evaluating test results</td>
<td>2.9±2.3</td>
<td>2.9±1.6</td>
<td>4.1±3.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Prescribing an e-prescription</td>
<td>1.2±0.6</td>
<td>1.2±0.8</td>
<td>1.9±1.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Informing patients about the treatment</td>
<td>1.6±1.3</td>
<td>2.2±1.5</td>
<td>2.8±2.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Informing patients about the follow-up protocol</td>
<td>1.2±1.0</td>
<td>1.3±0.9</td>
<td>2.0±1.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Answering patients’ additional questions</td>
<td>1.4±1.1</td>
<td>1.2±0.9</td>
<td>2.0±1.7</td>
<td><0.001</td>
</tr>
</tbody>
</table>

NS = Nonsignificant, TRH = Training and Research Hospitals, SD = Standard deviation

Table 4: Mean total duration of patient examination by patient category

<table>
<thead>
<tr>
<th>Patient category</th>
<th>Total duration of patient examination, mean±SD (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients presenting for the first time with acute-onset symptoms</td>
<td>19.0±8.9</td>
</tr>
<tr>
<td>Patients presenting for the first time with a chronic disorder (for at least 6 months)</td>
<td>22.0±10.8</td>
</tr>
<tr>
<td>Patients presenting for the first time with acute-onset symptoms who were referred from primary care or other provinces to secondary care for further evaluation</td>
<td>19.0±10.1</td>
</tr>
<tr>
<td>Patients presenting for the first time with acute-onset symptoms who were referred from secondary care to tertiary care for further evaluation</td>
<td>23.1±7.6</td>
</tr>
<tr>
<td>Patients presenting for the first time with a chronic disorder (for at least 6 months) who were referred from primary care or other provinces to tertiary care for further evaluation</td>
<td>25.9±9.2</td>
</tr>
<tr>
<td>Patients presenting for the first time with a chronic disorder (for at least 6 months) who were referred from secondary care to tertiary care for further evaluation (this group of patients will only be sampled by physicians from tertiary care centers)</td>
<td>25.9±10.4</td>
</tr>
<tr>
<td>Patients with records kept at the same unit who present for routine control</td>
<td>17.8±8.6</td>
</tr>
<tr>
<td>Patients with records kept at the same unit who present for acute exacerbation other than routine visits</td>
<td>18.8±8.3</td>
</tr>
</tbody>
</table>

SD = Standard deviation

The longest step of patient examination after medical history taking was evaluating test results. Physical examination took the third place which may be due to the reduced time allocated to physical examination in comparison to the increased consultation to complex tests. In our opinion, this result points to the change in the nature of medical practice.

Our study did not reveal any significant difference for patients over 65 and 80 years of age with respect to total duration of patient examination. In line with our results, a study by Hu and Reuben, which explored factors affecting the duration of patient examination among geriatric patients (>65 years), found that age (>80 years) was not a significant determinant. Similarly, Migongo et al. reported that age did not alter the duration of patient examination. A study that compared three age groups, namely, 45–64 years, 65–74 years, and ≥75 years, to explore the effect of age on duration of patient examination, failed to show any significant difference. Our study demonstrated that the only step that was significantly longer among patients aged over 65 years was the physical examination step. This may be due to a longer time needed for the elderly to get ready for the physical examination or due to the need for general examination because of increased incidence of accompanying diseases.

In our study, there was not any significant gender difference with regard to the duration of patient examination. Migongo et al. also reported that sex was not a determinant of duration of patient examination. Furthermore, in another study, a similar result was reported for patients with cancer.

According to our results, the time allocated for all examination steps except for physical examination was significantly longer in university hospitals than in government and training and research hospitals. This may be due to the fact that patients with chronic and more complicated conditions who were previously evaluated and treated at other centers present to university hospitals more often. The mean duration of patient examination in university hospitals was 30% longer than secondary care institutions (17.9 min vs. 23.3 min). While 8.2% of patients in secondary care institutions required duration of more than 30 min for patient examination, that proportion rose to 21.1% in university hospitals.

Among patient categories, the longest duration of patient examination was required for patients presenting for the first time with a chronic disorder (for at least 6 months) and referred
from secondary care to tertiary care. Similarly, Yawn et al. found that duration of patient examination was significantly longer when patients had chronic disorders.[11] Migongo et al., on the other hand, examined possible factors affecting duration of patient examination and reported that patients with multiple morbidities and chronic/multiple complaints who were examined by other physician(s) had a longer duration of patient examination, which may have been up to 41 min.[12]

Our study revealed the mean duration of patient examination in almost ideal conditions as 20.4 ± 9.6 in the pulmonary practice, a figure that was greater than figures previously reported in literature. It should be noted, however, that previous studies did not investigate the appropriate minimal duration of patient examination but only recorded durations spent in routine practice. Our study also determined that this figure was not adequate for most patients as a mean duration of examination, either. Rather, it was determined that much longer durations are required for patients referred from primary or secondary care to university hospitals. Patient appointment system should thus be re-designed accordingly.

Our study is the first to explore the appropriate minimal duration of patient examination in the pulmonology specialty. Its strengths include the prospective design and including a large number of different patient groups and different categories of hospitals. Its limitation is the physician dependence on the duration of patient examination so that too slow or too fast patient examinations may have affected the time of patient examination. However, this limitation can be considered acceptable since it reflects the real-life conditions.

Conclusion

According to the present study, almost the appropriate time for patient examination was determined to be 20 min on an average for the pulmonary practice. This duration exceeded 25 min in university hospitals and for patients with chronic lung disorders. Considering that the duration of patient examination may well exceed 30 min in approximately one in every seven patients, patient appointment system should be re-designed on the basis of patient characteristics. We believe that this is a must for the sake of the sine qua non of the art of medicine.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

Musellim, et al.: Duration for patient examination in pulmonary diseases

"The Duration for Patient Examination Working Group of Turkish Thoracic Society

Nafiye Yılmaz, Erzurum Station Training and Research Hospital, Erzurum, Turkey

Sevinsarinc Ulusali, Department of Chest Diseases, Medical Faculty, Afyon Kocatepe University, Afyonkarahisar, Turkey

Banu Salepci, Health Sciences University, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey

Birsen Ocakli, Health Sciences University, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey

Zinet Gul Ersoy Sokullu, Ordu Government Hospital, Ordu, Turkey

Oguz Uzun, Department of Chest Diseases, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey

Serif Kurtulus, Sanliurfa Ceylanpinar Government Hospital, Chest Diseases, Sanliurfa, Turkey

Selen Uslu, Department of Chest Diseases, Ordu University Training and Research Hospital, Ordu, Turkey

Emel Saritas, Samandag Government Hospital Chest Diseases, Hatay, Turkey

Sebahat Genc, Department of Chest Diseases, Mustafa Kemal University Medical Faculty, Hatay, Turkey

Ali Nihat Annakkaya, Department of Chest Diseases, Duzce University Medical Faculty, Duzce, Turkey

Omur Aydin, Department of Chest Diseases, Allergy and Immunology Division, Ankara University Medical Faculty Cebeci Hospital, Ankara, Turkey

Cahit Bilgin, Department of Chest Diseases, Sakarya University Medical Faculty, Sakarya, Turkey

Murat Turk, Yerkoy Government Hospital, Yozgat, Turkey

Ipek Ozmen, Health Sciences University, Suyeryupasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey

Mehmet Sezai Tasbakan, Department of Chest Diseases, Ege University Medical Faculty, Izmir, Turkey

Ayse Nigar Halis, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Center Hospital, Istanbul, Turkey

Sakine Nazik Bahcecioglu, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey

Gul Dabak, Istanbul Occupation Hospital, Istanbul, Turkey

Sacide Rana Isik, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Allergy and Immunology Division, Istanbul, Turkey

Ayse Bilge Ozturk, Koc University Hospital, Allergy and Immunology Division, Istanbul, Turkey

Metin Akgun, Ataturk University Medical Faculty, Department of Chest Diseases, Erzurum, Turkey

Aylin Pihtili, Istanbul Haydarpasa Training and Research Hospital, Istanbul, Turkey

Gulcihan Ozkan, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey

Ege Gulec Balbay, Department of Chest Diseases, Duzce University Medical Faculty, Duzce, Istanbul

Gulfer Okumus, Department of Chest Diseases, Istanbul University Medical Faculty, Istanbul, Turkey

Zeynep Pinar Onen, Department of Chest Diseases, Ankara University Medical Faculty, Ankara, Turkey

Nursen Yasayancan, Department of Chest Diseases, Tokat Gaziosmanpasa University Medical Faculty, Tokat, Turkey

Funda Elmas Uysal, Department of Chest Diseases, Ege University Medical Faculty, Izmir, Turkey

Ismail Hanta, Department of Chest Diseases, Cukurova University Medical Faculty, Adana, Turkey

Zuleyha Kaya, Department of Chest Diseases, Istanbul University Medical Faculty, Istanbul, Turkey

Hatice Turker, Health Sciences University, Sureyyupasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey

Cigdem Berkesoglu, Toros Government Hospital, Mersin, Turkey

Pinar Celik, Department of Chest Diseases, Medical Faculty, Celal Bayar University, Manisa, Turkey

Pelin Duru Cetinkaya, Adana Numune Training and Research Hospital, Adana, Turkey

Baran Gundogus, Health Sciences University, Sureyyupasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey

Gul Ongen, Department of Chest Diseases, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey

Esin Tuncay, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey

Fatma Erboy, Department of Chest Diseases, Bulent Ecevit University Medical Faculty, Zonguldak, Turkey